Homework 2, due September 12

1. [Bowen \mathcal{E} Wang, p. 45] Let \mathcal{V} be a vector space and consider the set $\mathcal{V} \times \mathcal{V}$. Define addition in $\mathcal{V} \times \mathcal{V}$ by

$$
(\vec{u}, \vec{v})+(\vec{x}, \vec{y})=(\vec{u}+\vec{x}, \vec{v}+\vec{y})
$$

and multiplication by complex numbers by

$$
(\lambda+i \mu)(\vec{u}, \vec{v})=(\lambda \vec{u}-\mu \vec{v}, \mu \vec{u}+\lambda \vec{v})
$$

where $\lambda, \mu \in \mathbf{R}$. Show that $\mathcal{V} \times \mathcal{V}$ is a vector space over the field of complex numbers.
2. [cf. Milne, p. 21] Which of the following sets of triples of real numbers (x, y, z) are subspaces of \mathbf{R}^{3} ?
(a) $x=2-y ; y$ and z arbitrary.
(b) $z=2 y-x ; x$ and y arbitrary.
(c) $z=|x| ; x$ and y arbitrary.
(d) x and $y \geq 0 ; z$ arbitrary.
(e) $x=y=2 z ; z$ arbitrary.
(f) $x=3 y ; z=0 ; y$ arbitrary.
3. [Bowen \mathfrak{E} Wang p. 54] Are the complex numbers $2+4 i$ and $6+2 i$ linearly independent with respect to the field of real numbers, \mathbf{R} ? Are they linearly independent with respect to the field of complex numbers?
4. [Milne p. 27] Consider the vector space of all real-valued continuous functions defined on $(-\infty, \infty)$. Which of the following conditions define a subspace?
(a) $x(1)=0$.
(b) $x(1)+x(-1)=0$.
(c) $x(1)+x(2)=2$.
(d) $\int_{-1}^{1} x(t) d t=0$.
(e) x is odd: $x(-t)=-x(t)$.
(f) x is periodic with period 2π.
5. Consider the following three sets of vectors in \mathbf{C}^{3}.
(a) $\{(1,0,0),(0,-1,0),(1,1,0)\}$
(b) $\{(1,0,1),(2,2,2)\}$
(c) $\{(1,0,0),(0,-1,0),(0,-1,1)\}$

Which of these is (are) linearly independent? Which $\operatorname{span}(\mathrm{s}) \mathbf{C}^{3}$? Which is (are) a basis for \mathbf{C}^{3} ? Which could be made into a basis by adding another vector?
6. [Bowen \mathcal{G} Wang p. 54] Let $\mathcal{M}^{2 \times 2}$ denote the vector space of all 2×2 matrices with elements from the real numbers \mathbf{R}. Is either of the following sets a basis for $\mathcal{M}^{2 \times 2}$?

$$
\begin{aligned}
& \left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 6 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
6 & 8
\end{array}\right)\right\} \\
& \left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

7. [Milne p.34] Find a minimal spanning set (hence a basis) for span \mathcal{S} when
(a) $\mathcal{S}=\{(1,0,2,0),(0,2,0,1),(1,2,2,1),(-1,0,3,0)\}$
(b) $\mathcal{S}=\{(0,1,2,3),(3,0,1,2),(2,3,0,1),(1,2,3,0)\}$
(c) $\mathcal{S}=\left\{1+2 t, 1-t+t^{2}, 4+t^{2}, 1-t^{3}, 4+2 t+t^{2}+t^{3}\right\}$
8. [cf. Milne pp. 34-35] Prove that every system of n homogeneous linear equations in $n+1$ or more unknowns has a nonzero solution. Hint: Think of the columns of the coefficient matrix as vectors in \mathbf{R}^{n}.
