Homework 3, due September 19

1-2. Exercises 10.1 and 10.5, pp. 58-59.
3. [Milne p. 27] Let \mathcal{U} be the subspace of \mathbf{R}^{3} consisting of the vectors $(0, y, z)$, and let \mathcal{W} be the subspace spanned by $(2,1,0)$ and $(1,2,3)$. Which vectors are in $\mathcal{U} \cap \mathcal{W}$? Which vectors are in $\mathcal{U}+\mathcal{W}$? Is the sum direct?
4. [cf. Milne p. 35] Referring back to Exercise 2 of the last assignment: In those cases which are subspaces of \mathbf{R}^{3}, find a basis for a direct complement.
5. [Milne p. 35] Find the codimension of the following subspaces of the space of continuous functions $f(t)$ on $[0,1]$:
(a) subspace defined by conditions $f\left(\frac{1}{2}\right)=0, \quad f\left(\frac{1}{3}\right)=f\left(\frac{2}{3}\right)$.
(b) subspace defined by conditions

$$
\int_{0}^{1}\left(t-\frac{1}{2}\right)^{n} f(t) d t=0, \quad n=0,1,2
$$

Hint: Read about orthonormal bases and the Gram-Schmidt construction first.
6-10. Exercises 12.1, 12.2, 12.5, 12.6, 12.7, p. 69.
Note: Ex. 12.6 is misstated (how?).

