Math. 640

Homework 4, due September 26

- 1-3. Exercises 13.3 [for $\dim \mathcal{U} < \infty$], 13.5, 13.7, p. 74.
 - 4. (a) Show that every formula of the form

$$(\underline{A}\vec{v})^{j} \equiv \sum_{k} A^{j}{}_{k}v^{k} \qquad (k = 1, \dots, n; \quad j = 1, \dots, m)$$

defines a linear mapping \underline{A} of \mathcal{F}^n into \mathcal{F}^m (where \mathcal{F} is the field).

- (b) Show that this correspondence between linear operators and $m \times n$ matrices is one-to-one (i.e., two different matrices can't represent the same operator (with respect to the same bases), nor vice versa).
- 5. Complete the proof of Theorem 15.8 by showing that dim ran $\underline{A} = \infty$ implies dim dom $\underline{A} = \infty$.
- 6. (a) Show that if $\omega = n\pi$ $(n \in \mathbb{Z}, n \neq 0)$, then

$$f''(t) + \omega^2 f(t) = g(t) \tag{E}$$

has many solutions satisfying

$$f(0) = 0 = f(1), \tag{C}_1$$

if it has any such solutions at all.

- (b) Show that if $\omega \neq n\pi$, then (E) has at most one solution satisfying (C₁).
- 7. Using methods from an elementary ODE course (variation of parameters),
 - (a) Show that if $\omega \neq n\pi$, then (E) has exactly one solution satisfying (C₁).
 - (b) Show that if $\omega = n\pi$, then
 - (i) If $\int_0^1 g(t) \sin n\pi t \, dt = 0$, then a solution exists satisfying (C₁) (not unique).
 - (ii) If this integral is not 0, then no solution exists satisfying (C_1) .