Homework 4, due September 26

1-3. Exercises 13.3 [for $\operatorname{dim} \mathcal{U}<\infty$], 13.5, 13.7, p. 74.
4. (a) Show that every formula of the form

$$
(\underline{A} \vec{v})^{j} \equiv \sum_{k} A^{j}{ }_{k} v^{k} \quad(k=1, \ldots, n ; \quad j=1, \ldots, m)
$$

defines a linear mapping \underline{A} of \mathcal{F}^{n} into \mathcal{F}^{m} (where \mathcal{F} is the field).
(b) Show that this correspondence between linear operators and $m \times n$ matrices is one-to-one (i.e., two different matrices can't represent the same operator (with respect to the same bases), nor vice versa).
5. Complete the proof of Theorem 15.8 by showing that $\operatorname{dim} r a n \underline{A}=\infty$ implies $\operatorname{dim} \operatorname{dom} \underline{A}=\infty$.
6. (a) Show that if $\omega=n \pi(n \in \mathbf{Z}, n \neq 0)$, then

$$
\begin{equation*}
f^{\prime \prime}(t)+\omega^{2} f(t)=g(t) \tag{E}
\end{equation*}
$$

has many solutions satisfying

$$
\begin{equation*}
f(0)=0=f(1), \tag{1}
\end{equation*}
$$

if it has any such solutions at all.
(b) Show that if $\omega \neq n \pi$, then (E) has at most one solution satisfying $\left(\mathrm{C}_{1}\right)$.
7. Using methods from an elementary ODE course (variation of parameters),
(a) Show that if $\omega \neq n \pi$, then (E) has exactly one solution satisfying $\left(\mathrm{C}_{1}\right)$.
(b) Show that if $\omega=n \pi$, then
(i) If $\int_{0}^{1} g(t) \sin n \pi t d t=0$, then a solution exists satisfying $\left(\mathrm{C}_{1}\right)$ (not unique).
(ii) If this integral is not 0 , then no solution exists satisfying $\left(\mathrm{C}_{1}\right)$.

