
Inner products (Sec. 12)

So far our vector spaces carry no concepts of
length
distance
angle
orthogonality (perpendicularity).

An inner product (an extra operation) provides these, and also provides one possible source
of

limits
infinite sums or linear combinations
open and closed sets
continuous functions, differentiable functions, etc.

— in short, a topology.

An inner product is also called a “scalar product” (especially by physicists) and gen-
eralizes the “dot product” in R3. For the moment, following Bowen & Wang, I use the
dot notation and state the definition for F = C; if F = R, ignore the conjugations.

Definition: An inner product is a function

V × V → C [R] (~u,~v) 7→ ~u · ~v

with the properties

1. ~u · ~v = ~v · ~u ([Hermitian] symmetry)

2. (λ~u) · ~v = λ(~u · ~v) — hence ~u · (λ~v) = λ(~u · ~v).

3. (~u+ ~w) · ~v = ~u · ~v + ~w · ~v — hence additive also in the right variable.
((2) and (3) together define sesquilinearity (C) or bilinearity (R).)

4. ~u · ~u ≡ ‖~u‖2 ≥ 0, with equality only when ~u = ~0. (positive definiteness)

‖~u‖ is called the norm (or “length”) of ~u.

Notational variations:

(1) ~u · ~v ≡ (~u,~v) ≡ 〈~u,~v〉 ≡ 〈~u|~v〉. Such “bracket” notations are standard when the
vectors belong to a function space (and may even be necessary then to avoid ambiguity).
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(2) Physicists insist the inner product is linear on the right :

〈~u, λ~v〉 = λ〈~u,~v〉 = 〈λ~u,~v〉.

This convention has genuine advantages when inner products are related to linear func-
tionals (Chap. 7). (Of course, when the scalars are real, there’s no difference.)

For these reasons, in the future we may occasionally adopt a bracket notation with
the complex conjugation in the physicists’ place.

Examples:

1. Rn or Cn; ~u · ~v ≡
n∑
j=1

uj vj

2.A) Space of terminating sequences of scalars: e.g., ~u = (u1, 0, u3, 0, 0, . . . ).

‖~u‖2 ≡
∞∑
j=1

|uj |2 <∞.

Remark: Given a formula for ‖~u‖2 for some inner-product space, one can usually guess
the formula for the inner product, ~u · ~v, itself. Here,

~u · ~v ≡
∞∑
j=1

uj vj .

Indeed, the norm determines the inner product via a polarization identity,

~u · ~v =
1

2
[‖~u+ ~v‖2 + i‖~u+ i~v‖2 − (1 + i)‖~u‖2 − (1 + i)‖~v‖2]

or

~u · ~v =
1

4
[‖~u+ ~v‖2 − ‖~u− ~v‖2 + i‖~v − i~u‖2 − i‖~v + i~u‖2].

2.B) This inner product can’t be defined on the space of all sequences, since the series
would usually diverge. The natural vector space where it lives is

`2 ≡ { ~u : Z+ → F ,
∞∑
j=1

|uj |2 <∞}.

3. Similarly, we can make inner products of functions, say with a domain (a, b) ⊂ R,
such that

‖f‖2 ≡
∫ b

a

|f(x)|2 dx <∞.
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Here there’s a new complication:
∫ b
a
|f(x)|2 dx may be 0 even though ∃x : f(x) 6= 0.

To satisfy the positive definiteness condition, we must consider two functions “the

same” if
∫ b
a
|f1− f2|2 dx = 0. I.e., the elements of this space, L2(a, b), are equivalence

classes of functions. More about this when we study factor spaces.

Remark: Complete inner product spaces (Hilbert spaces) have such nice properties that
they are often the best arena for doing analysis — e.g., studying solutions of differential or
integral equations. For the moment, think of “complete” as meaning that all sequences or
functions for which the inner product converges are included in the space, as we demanded
for `2 and L2.

4. Sobolev spaces have more complicated formulas for their inner products. These spaces
are valuable technical tools in analysis.

A) ‖~u‖2s =
∞∑
j=1

j2s|uj |2 <∞

B) ‖f‖2s =

∫ b

a

[|f (s)(x)|2 + |f(x)|2] dx <∞

Fourier series coefficients of functions of type B are sequences of type A, roughly
speaking.

Norm and Metric: See Bowen & Wang.

Theorem 12.1 (Schwarz Inequality). [also attached to names of Cauchy and Bun-
yakovsky]

|~u · ~v| ≤ ‖~u‖‖~v‖

with equality if and only if ~u and ~v are proportional (parallel, dependent, collinear).

Proof of the equality is in the homework. The proof of the inequality in the book is of
the “black magic” type. I’ll try to make it more instructive (if verbose):

Proof for real case: ∀λ, ~u, ~v,

0 ≤ (~u+ λ~v) · (~u+ λ~v)

= ‖~u‖2 + 2λ~u · ~v + λ2‖~v‖2.

Therefore 0 ≥ b2 − 4ac

4
≡ B2 −AC

= (~u · ~v)2 − ‖~u‖‖~v‖2.

Hence QED.
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λ

forbidden case
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Try complex case by same method:

0 ≤ (~u+ λ~v) · (~u+ λ~v) = ‖~u‖2 + λ~v · ~u+ λ~u · ~v + |λ|2‖~v‖2.

Let λ = µ+ iν, ~u · ~v = x+ iy. Then

λ~u · ~v = (µ+ iν)(x− iy) = µx+ νy + i(νx− µy)

⇒ λ~v · ~u+ λ~u · ~v = 2 Re [λ~v · ~u] = 2(µx+ νy)

⇒ 0 ≤ ‖~u‖2 + 2µx+ 2νy + (µ2 + ν2)‖~v‖2

Take ν = 0: 0 ≤ ‖~u‖2 + 2µx+ µ2‖~v‖2

⇒ x2 ≤ ‖~u‖2‖~v‖2 as in real case

⇒ |Re (~u · ~v)| ≤ ‖~u‖‖~v‖.

Similarly, µ = 0 ⇒ |Im (~u · ~v)| ≤ ‖~u‖‖~v‖.
Thus |~u · ~v| =

√
x2 + y2 ≤

√
2‖~u‖‖~v‖.

This is nice, but not good enough. We haven’t yet explored the best direction in the
complex plane — the one that will allow us to pick up all of |~u · ~v|, not just Re or Im of
it, in the quadratic inequality. We must get λ “in phase” with ~u · ~v in some sense.

Try λ = reiθ, ~u · ~v = seiφ (s = |~u · ~v|).

0 ≤ ‖~u‖2 + reiθse−iφ + re−iθseiφ + r2‖~v‖2.

So, choose θ = φ: 0 ≤ ‖~u‖2 + 2r|~u · ~v|+ r2‖~v‖2

⇒ 0 ≥ B2 −AC = |~u · ~v|2 − ‖~u‖2‖~v‖2, QED.

Corollary 12.2 (Triangle Inequality).

‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖ ........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......................

...................

...................................................................................................................................................... .........
.........
.

...............................................................
...............................................................

........................................................................... ...................

~u ~v

~u+ ~v

This is a key property of a norm or distance (metric).

Remark: One may study indefinite inner products, such that ~u · ~u may be negative (as
for space-time vectors), or ~u · ~u may be 0 although ~u 6= 0 (as for function spaces before
passing to equivalence classes). But these do not satisfy the basic properties of a metric,
and hence do not define useful topologies.
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Remark:
|~u · ~v|
‖~u‖‖~v‖

measures the difference in direction of ~u and ~v. Its extreme values:

1 if vectors parallel

(from Schwarz)

.................................................................................... ................................................................................... ................... ............................................................................................ ...................•

0 if vectors orthogonal

(definition)
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•

For a real inner product space, we define the angle θ between vectors by

cos θ =
~u · ~v
‖~u‖‖~v‖

(−1 ≤ cos θ ≤ 1, 0 ≤ θ ≤ π).
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~u

~v ~u− ~v
θ

Proof that this coincides with the elementary notion of angle:

‖~u− ~v‖2 = ‖~u‖2 − 2~u · ~v + ‖~v‖2 from def. of norm

cf. ‖~u− ~v‖2 = ‖~u‖2 + ‖~v‖2 − 2‖~u‖‖~v‖ cos θ from trig

[Book says (p. 69), “ . . . derive the law of cosines,” but that’s a fraud. You need the
independent high-school proof of the law in order to justify the definition of θ.]
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