Isomorphisms and projections (Sec. 17)

DEFINITIONS: $\underline{A}: \mathcal{V} \to \mathcal{U}$ is bijective if it is both injective and surjective (one-to-one and onto). An isomorphism is a linear bijection.

If \mathcal{V} and \mathcal{U} are isomorphic, they are abstractly "the same" space. E.g., any finite-dimensional space can be identified with \mathbf{R}^n or \mathbf{C}^n (not uniquely — depends on basis). $\mathcal{L}(\mathcal{V},\mathcal{U})$ is isomorphic to the $m \times n$ matrices, in turn isomorphic to \mathbf{R}^{mn} .

OBSERVATIONS

 \underline{A} is bijective iff invertible: $\underline{A}^{-1}\underline{A}=\underline{1}, \quad \underline{A}\underline{A}^{-1}=\underline{1}. \qquad (\underline{1}\equiv I=\text{identity operator}.$ The two $\underline{1}$'s in the equations refer to different spaces!)

The inverse operator is represented by the inverse matrix. A^{-1} is unique if it exists (on both sides).

One-sided "inverses" are not unique.

Left inverse $(\underline{BA} = \underline{1}) \iff \underline{A}$ injective.

Right inverse $(\underline{AB} = \underline{1}) \iff \underline{A}$ surjective.

THEOREM 17.1. $(\underline{BA})^{-1} = \underline{A}^{-1}\underline{B}^{-1}$ (if these exist).

THEOREM 17.2. Two finite-dimensional vector spaces (over the same field) are isomorphic iff they have the same dimension.

Sketch of proof: Both of them are isomorphic to \mathbb{R}^n or \mathbb{C}^n :

$$\mathcal{V} \xrightarrow{\underline{A}} \mathbf{R}^n \xleftarrow{\underline{B}} \mathcal{U}. \qquad \underline{B}^{-1}\underline{A}: \mathcal{V} \to \mathcal{U}.$$

JARGON: An automorphism is an isomorphism of \mathcal{V} onto \mathcal{V} . The automorphisms make up the general linear group, $GL(\mathcal{V})$. GL(n) is the group of invertible $n \times n$ matrices (identifiable with $GL(\mathcal{F}^n)$).

An endomorphism is any member of $\mathcal{L}(\mathcal{V}, \mathcal{V})$ (invertible or not).

PROJECTIONS

Definition: $\underline{P} \in \mathcal{L}(\mathcal{V}, \mathcal{V})$ is a projection if $\underline{P}^2 = \underline{P}$.

A projection projects *onto* one subspace *along* another (complementary) subspace:

I.e.,

Theorem 17.3. $\mathcal{V} = \operatorname{ran} \underline{P} \oplus \ker \underline{P} = \mathcal{V}_1 \oplus \mathcal{V}_2$.

PROOF: Let $\vec{w} = \vec{v} - \underline{P}\vec{v}$. Then $\underline{P}\vec{w} = \vec{0}$, so $\vec{w} \in \ker \underline{P}$. Therefore $\vec{v} = \underline{P}\vec{v} + (\underline{1} - \underline{P})\vec{v} \in \ker \underline{P} + \ker \underline{P}$. We must also show that $\operatorname{ran} \underline{P} \cap \ker \underline{P} = \{\vec{0}\}$:

$$\vec{u} \in \operatorname{ran} \cap \ker \implies \vec{u} = \underline{P}\vec{v} \implies \vec{0} = \underline{P}\vec{u} = \underline{P}^2\vec{v} = \underline{P}\vec{v} = \vec{u}.$$

Remark: \underline{P} is defined by the *pair* of subspaces. ran \underline{P} does not determine \underline{P} uniquely:

In an inner product space, the projection onto a given subspace (ran \underline{P}) can be made unique by requiring that the complement be orthogonal. As a condition on \underline{P} , this is $\underline{P} = \underline{P}^*$ (the adjoint of \underline{P} , defined in the next section).

In passing we noted that $\underline{1} - \underline{P} = \text{projection onto ker } \underline{P} \text{ along ran } \underline{P}$. Check this:

$$(\underline{1} - \underline{P})^2 = \underline{1} - \underline{P} - \underline{P} + \underline{P}^2 = \underline{1} - \underline{P}.$$

Generalization (Theorem 17.4). $\mathcal{V} = \operatorname{ran} \underline{P}_1 \oplus \operatorname{ran} \underline{P}_2 \oplus \cdots \oplus \operatorname{ran} \underline{P}_R \iff$

$$\underline{P}_k^2 = \underline{P}_k, \qquad \underline{P}_k \underline{P}_l = \underline{0} \text{ if } k \neq l, \qquad \underline{1} = \sum_{k=1}^R \underline{P}_k.$$

2

 $\underline{P}_k \vec{v} \equiv \text{component of } \vec{v} \text{ in ran } \underline{P}_k .$