
The polar decomposition (Thm. 27.8)

Cf. x+ iy = reiθ, r > 0, |eiθ| = 1.

Definition: A is positive if A is Hermitian and ~v ·A~v ≥ 0, ∀~v.

(If F = C, the Hermiticity requirement is redundant — see homework.) This implies
that all the eigenvalues of A are ≥ 0. Therefore,

√
A is well-defined (and positive):

√

A =
∑

ν

√

λν P ν .

Theorem. If A is any endomorphism, AA∗ and A∗A are positive.

Proof: ~v ·A∗A~v = ‖A~v‖2 ≥ 0. Similarly for the other case. It is easy to see that the two
operators are Hermitian. (Note that they are not equal, in general.)

Consider the positive operator
√

A∗A. Can we find a unitary operator U so that

A = U
√

A∗A ?

[Warning: Bowen & Wang’s U is my
√

A∗A !] Assume for simplicity that A is invertible.

Equivalently (see homework),
√

A∗A is invertible (i.e.,
√

A∗A is positive definite; 0 /∈
σ
(
√

A∗A
)

). Then U must be

U = A(A∗A)−
1

2 .

Let’s check unitarity:

U∗U = (A∗A)−
1

2A∗A(A∗A)−
1

2 = (A∗A)0 = 1 ;

U U∗ = A(A∗A)−1A∗ = AA−1A∗−1A∗ = 1.

(Actually, one of these would have sufficed; our proof is limited to finite-dimensional en-
domorphisms anyway, since only for them do we have a spectral theorem so far.)

One can prove (see book) that
√

A∗A is the only positive Hermitian operator B with
the property that U ≡ AB−1 is unitary.

Similarly, A =
√

AA∗ U (with the same U). To see that the U ’s are the same, note
that this second type of polar decomposition is also unique and then write

A = U
√

A∗A = U
√

A∗AU−1U ;

since U
√

A∗AU−1 is positive, it must equal
√

AA∗.

If A is not invertible, things become more complicated and U is not unique. (It can
map kerA onto (ranA)⊥ in an arbitrary isometric way.) Let’s see whether you can handle
this case as a homework problem.

Putting all this together, we have proved a theorem, which it should not be necessary
to restate.
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Sylvester’s formula (cf. (28.18))

If A has diagonal Jordan form (A =
∑

λνP ν), then

P ν =

∏

µ6=ν

(λµ1−A)

∏

µ6=ν

(λµ − λν)

(where µ varies from 1 to L in each product).

Proof: P ν = f(A) where f is any function satisfying

f(λν) = 1, f(λµ) = 0 if µ 6= ν.

Such a function is

f(x) =

∏

µ6=ν(λµ − x)
∏

µ6=ν(λµ − λν)
.

Proof of the “Feynman diagram” algorithm

for the invariants µj in terms of traces of powers of A

We want to expand det (A− λ) as a polynomial in λ. It’s convenient to write

det (A− λ) = (−λ)N det (1− λ−1A).

Let z ≡ λ−1. If z is sufficiently small, ln (1− zA) will be well-defined. [Recall that

ln (1− A) = −
∞
∑

n=1

1

n
An

makes sense for A such that the series converges. Alternatively,

ln (1− zA) =
∑

ν

ln (1− zλν)P ν + nilpotent terms (#)

is well-defined if, for all ν, 1− zλν is not on the nonpositive real axis.]

Lemma. det B = etr lnB if lnB is defined.

This is an important theorem in its own right.
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Proof:

Case 1: B diagonalizable. Look at the matrices in a basis where B is diagonal.

B =





λ1 0
λ2

0
. . .



 ; lnB =





lnλ1 0
lnλ2

0
. . .



 ;

so

tr lnB =

N
∑

j=1

lnλj ;

etr lnB =

N
∏

j=1

elnλj =

N
∏

j=1

λj = detB.

This is an operator (basis-independent) result, since det and tr are invariant under
similarity transformations, and ln and exp are covariant thereunder [i.e., S lnB S−1 =
ln (SBS−1), etc.].

Case 2: B has nondiagonal Jordan canonical form.

Argument 1: Such B’s form a lower-dimensional hypersurface in the space of all
endomorphisms. That is, any matrix with nondiagonal JCF is a limit of a sequence of
matrices with diagonal JCF; indeed, any matrix with coincident eigenvalues is a limit of
matrices with distinct eigenvalues, obtained by slightly perturbing one or more elements of
the matrix. [This is true even though the corresponding diagonal matrices do not converge
to the nondiagonal JCF. A sequence of 0’s can’t converge to a 1!] Since all the functions
involved are continuous functions of B, the result follows from Case 1.

Argument 2: We noted earlier that B in Jordan form, with diagonal elements λj ,
implies that f(B) is upper triangular, with diagonal elements f(λj). Therefore, tr lnB =
∑

j lnλj , detB =
∏

j λj , and hence the rest of the proof given for Case 1 applies after all!

Now we resume the derivation of the Feynman-diagram algorithm. Expand det (1 −
zA) = exp[tr ln (1− zA)] as a power series in z. If A is N ×N , this will in fact terminate
with the zN term and give us det (1 − zA). (Our proof gives us this for small z, but
the result is then correct for all z since it’s a purely algebraic fact. We know that the
characteristic invariants are polynomials in the matrix elements of A; the only question
is what the coefficients are. Alternatively, one can appeal to the uniqueness of analytic
continuations of analytic functions.)
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We expand first ln and then exp, getting

exp

{

−tr
∞
∑

n=1

znAn

n

}

=
∞
∑

p=0

(−1)p

p!

{

tr
∞
∑

n=1

znAn

n

}p

≡
∞
∑

j=0

zj(−1)jµj .

Therefore, each term in µj has the form

(−1)j+p

p!

p
∏

i=1

tr (Ani)

ni

for some p, n1, . . . , np such that
∑p

i=1
ni = j.

Let us represent each term by an “ordered” ring diagram; for example,
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×××

××× ×××

tr (A3)

+

×××
××× ×××

(trA)tr (A2)

+××× ×××
×××

tr (A2)(trA)

+

××× ××× ×××

(trA)3

We note that the two middle terms can be combined. In general, terms which differ only
by the ordering of rings with different numbers of vertices can be combined. The number
of ordered diagrams equivalent to a given unordered diagram is the number (p!) of distinct
permutations of rings divided by the numbers of permutations that just interchange rings
with the same number of vertices:

p!

m1!m2! · · · mmaxni
!

where mk is the number of rings containing k vertices. (The reason that permutations of
the latter type don’t count is that they do not yield distinct ordered diagrams.) Therefore,
the coefficient associated with each unordered ring diagram is

(−1)j+p

( p
∏

i=1

ni

)(maxni
∏

k=1

mk!

)

.

This multiplies
∏p

i=1
tr (Ani), symbolized by the rings in the corresponding diagram.

This is the rule stated in an earlier lecture, QED.
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