$$V_{h-3} = V_{h-2} \oplus \tilde{N}_{h-2} \oplus L_{h-2} ,$$

where \underline{A} maps L_{h-2} isomorphically onto $\tilde{N}_{h-1} \oplus L_{h-1}$. [Thus an element of L_{h-2} is either the second vector in a Jordan chain of length h-1, or the third vector in a chain of length h.] We continue in this way until we get to $V_0 \equiv \mathcal{V}$. Thus we have a decomposition

$$\mathcal{V} = V_1 \oplus \tilde{N}_1 \oplus L_1 \\
= V_2 \oplus \tilde{N}_2 \oplus L_2 \oplus \tilde{N}_1 \oplus L_1 \\
= \dots \\
= \underbrace{V_h \oplus \tilde{N}_h}_{h \oplus \tilde{N}_{h-1} \oplus L_{h-1} \oplus \dots \oplus \tilde{N}_1 \oplus L_1}_{V_{h-1}}$$

And the action of \underline{A} on these subspaces is

To get a Jordan basis, start by choosing a basis for each \tilde{N}_j ; let the basis for L_{h-1} be the inverse images of the basis vectors for \tilde{N}_h ; let the basis vectors for L_{h-2} be the inverse images of the basis vectors for $\tilde{N}_{h-1} \oplus L_{h-1}$; etc. The matrix of \underline{A} with respect to this basis has the form claimed in the lemma (with $V_h = \text{dom } \underline{B}$). Indeed, the basis vectors in each chain of inverse images belong to a single Jordan block