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where A maps Lj_; isomorphically onto Nj_; @ Lp_1. [Thus an element of Ly_»
is either the second vector in-a Jordan chain of length h — 1, or the third vector in
a chain of length h.] We continue in this way until we get to Vo = V. Thus we have
a decomposition
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And the action of A on these subspaces is
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To get a Jordan basis, start by choosing a basis for each N ;3 let the basis for
Ly be the inverse images of the basis vectors for N4 ; let the basis vectors for Lp_s
be the inverse images of the basis vectors for Ny_1 @ Ly—_1; etc. The matrix of A
with respect to this basis has the form claimed in the lemma (with V; = dom B).
Indeed, the basis vectors in each chain of inverse images belong to a single Jordan

block
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