The Galperin-Waksman proof of Jordan canonical form

It suffices to prove:

Lemma 1. If $0 \in \sigma(\underline{A})$, then there exists a basis with respect to which

$$
A=\left(\begin{array}{c|ccccc}
\mathrm{B} & & & & 0 & \\
- & & & & & \\
& 0 & 1 & & & 0 \\
0 & & 0 & 0 & & \\
& & & 0 & 1 & \\
& & & & 0 & \ddots \\
& 0 & & & & \ddots
\end{array}\right)
$$

Here the bottom right block is in Jordan canonical form with diagonal elements all equal to 0 , and the matrix B is nonsingular, except when it is nonexistent (i.e., when $\sigma(\underline{A})=\{0\}$).

Proof of theorem from Lemma 1: Argue by induction on $\operatorname{dim} \mathcal{V}$. Choose $\lambda \in \sigma(\underline{A})$ and apply the lemma to $\underline{A}-\lambda$ in the role of \underline{A}. Choose the basis for dom \underline{B} so as to put B into Jordan canonical form. (This is possible by the inductive hypothesis. If $\operatorname{dim} \mathcal{V}=1$ (the start of the induction), then the Jordan theorem is trivial.) The result is a Jordan form for $\underline{A}-\lambda$. Add λ (times $\underline{1}$) to get a Jordan form for \underline{A}. (Note that λ doesn't appear as an eigenvalue of $\underline{B}+\lambda$, since \underline{B} is nonsingular.)

Proof of lemma: Let $V_{1}=\operatorname{ran} \underline{A}$. (Note that this and other subspaces will not be denoted by script letters in this proof. V_{1} should not be confused with $\mathcal{V}\left(\lambda_{1}\right)$.) Since \underline{A} is singular, $V_{1} \neq V_{0} \equiv \mathcal{V}$.

Let $V_{2} \equiv \operatorname{ran}\left(\left.\underline{A}\right|_{V_{1}}\right) \equiv$ image of V_{1} under $\underline{A} ;$

$$
\begin{aligned}
& \vdots \\
V_{j} & \equiv \operatorname{ran}\left(\left.\underline{A}\right|_{V_{j-1}}\right) \equiv \underline{A}\left[V_{j-1}\right]=\operatorname{ran} \underline{A}^{j} \\
& \vdots
\end{aligned}
$$

Note by induction that $V_{j} \subseteq V_{j-1}$ (i.e., $\underline{A}\left[V_{j-1}\right] \subseteq \underline{A}\left[V_{j-2}\right]$).
Since $\operatorname{dim} \mathcal{V}<\infty$, eventually $\exists h: V_{h}=V_{h+1}=V_{h+2}=\ldots$. Thus $\left.\underline{B} \equiv \underline{A}\right|_{V_{h}}$ is nonsingular, with $\operatorname{ran} \underline{B}=\operatorname{dom} \underline{B}=V_{h}$. For $j \leq h$, we have $V_{j} \subset V_{j-1}$ properly.

Let $N_{j} \equiv \operatorname{ker}\left(\left.\underline{A}\right|_{V_{j-1}}\right)$. Then $V_{j}+N_{j} \subset V_{j-1}$. [A peek ahead: Vectors in N_{j} are, of course, 0 -eigenvectors of \underline{A}. Eventually it will be seen that they are those eigenvectors
that stand at the head of a Jordan chain of j vectors; e.g., for

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

the first row and column belong to a basis vector in N_{3}, the last row and column to one in N_{1}.] The sum $V_{j}+N_{j}$ need not be direct (i.e., $V_{j} \cap N_{j} \neq\{\overrightarrow{0}\}$, perhaps). Let $\tilde{N}_{j} \subset N_{j}$ be a direct complement of V_{j} within $V_{j}+N_{j}-$ so that $V_{j} \oplus \tilde{N}_{j}=V_{j}+N_{j} \subset V_{j-1}$.

Now $V_{j} \oplus \tilde{N}_{j}$ need not be all of V_{j-1}. However, if $j=h$, then it is: If $\vec{w} \in V_{h-1}$, then $\underline{A} \vec{w} \in V_{h}=V_{h+1}$, so $\underline{A} \vec{w}=\underline{A} \vec{x}$ for some $\vec{x} \in V_{h} \subset V_{h-1}$. Therefore $\underline{A}(\vec{w}-\vec{x})=\overrightarrow{0}$, and $\vec{w}-\vec{x} \in V_{h-1}$; that is, $\vec{n} \equiv \vec{w}-\vec{x} \in N_{h}$. Thus $\vec{w}=\vec{x}+\vec{n}$, where $\vec{x} \in V_{h}$ and $\vec{n} \in N_{h}$, as claimed. (Incidentally, in this case $\tilde{N}_{h}=N_{h}$, since V_{h} can't contain kernel vectors.)

Thus we have $V_{h-1}=V_{h} \oplus \tilde{N}_{h}$ and also $V_{h-1} \oplus \tilde{N}_{h-1} \subset V_{h-2}$. I claim that

$$
V_{h-2}=V_{h-1} \oplus \tilde{N}_{h-1} \oplus L_{h-1}
$$

where L_{h-1} is a subspace which \underline{A} maps isomorphically onto \tilde{N}_{h}. [Thus an element of L_{h-1} is the second vector in a Jordan chain of h vectors.] (Proof of claim postponed to end of proof.) We next look at $V_{h-2} \oplus \tilde{N}_{h-2} \subset V_{h-3}$. I claim (again postponing proof) that

$$
V_{h-3}=V_{h-2} \oplus \tilde{N}_{h-2} \oplus L_{h-2}
$$

where \underline{A} maps L_{h-2} isomorphically onto $\tilde{N}_{h-1} \oplus L_{h-1}$. [Thus an element of L_{h-2} is either the second vector in a Jordan chain of length $h-1$, or the third vector in a chain of length h.] We continue in this way until we get to $V_{0} \equiv \mathcal{V}$. Thus we have a decomposition

$$
\begin{aligned}
\mathcal{V} & =V_{1} \oplus \tilde{N}_{1} \oplus L_{1} \\
& =V_{2} \oplus \tilde{N}_{2} \oplus L_{2} \oplus \tilde{N}_{1} \oplus L_{1} \\
& =\cdots \\
& =V_{h} \oplus \tilde{N}_{h} \oplus \tilde{N}_{h-1} \oplus L_{h-1} \oplus \cdots \oplus \tilde{N}_{1} \oplus L_{1}
\end{aligned}
$$

And the action of \underline{A} on these subspaces is

0		
0	\tilde{N}_{h}	V_{h}
0	\tilde{N}_{h-1}	L_{h-1}
	\tilde{N}_{h-2}	L_{h-2}
0	\vdots	\vdots
0	\tilde{N}_{3}	L_{3}
0	\tilde{N}_{2}	L_{2}
	\tilde{N}_{1}	L_{1}

To get a Jordan basis, start by choosing a basis for each \tilde{N}_{j}; let the basis for L_{h-1} be the inverse images of the basis vectors for \tilde{N}_{h}; let the basis vectors for L_{h-2} be the inverse images of the basis vectors for $\tilde{N}_{h-1} \oplus L_{h-1}$; etc. The matrix of \underline{A} with respect to this basis has the form claimed in the lemma (with $V_{h}=\operatorname{dom} \underline{B}$). Indeed, the basis vectors in each chain of inverse images belong to a single Jordan block

$$
\begin{aligned}
& \tilde{N}_{j} \\
& L_{j-1} \\
& L_{j-2} \\
& \vdots \\
& L_{2} \\
& L_{1}
\end{aligned}\left(\begin{array}{cccccc}
0 & 1 & & & & 0 \\
& 0 & 1 & & & \\
& & 0 & 1 & & \\
& & & \ddots & \ddots & \\
& & & & \ddots & 1 \\
0 & & & & & 0
\end{array}\right) .
$$

It remains to prove the "claims":

Lemma 2. If $V_{j}=V_{j+1} \oplus M$, then $\exists L \subset V_{j-1}$ such that $V_{j-1}=\left(V_{j}+N_{j}\right) \oplus L$ and \underline{A} maps L isomorphically onto M. (This has been applied in cases where $M \equiv \tilde{N}_{j+1} \oplus L_{j+1}$; we then used the fact that $V_{j}+N_{j}=V_{j} \oplus \tilde{N}_{j}$.)

Proof: Choose a basis $\left\{\vec{y}_{1}, \ldots, \vec{y}_{m}\right\}$ for M. Since $M \subset V_{j} \equiv \operatorname{ran}\left(\left.\underline{A}\right|_{V_{j-1}}\right), \exists \vec{z}_{1}, \ldots, \vec{z}_{m}$ $\in V_{j-1}$ such that $\vec{y}_{j}=\underline{A} \vec{z}_{j}$. The \vec{z} s are independent, and $L \equiv \operatorname{span}\left\{\vec{z}_{1}, \ldots, \vec{z}_{m}\right\}$ is a subspace of V_{j-1} mapped isomorphically onto M. We need to show:
(A) $\left(V_{j}+N_{j}\right) \cap L=\{\overrightarrow{0}\}: \vec{x} \in\left(V_{j}+N_{j}\right) \cap L \Rightarrow \vec{x}=\vec{v}+\vec{n}$ and $\underline{A} \vec{x} \in M$; the first of these implies $\underline{A} \vec{x}=\underline{A} \vec{v}+\underline{A} \vec{n}=\underline{A} \vec{v} \in V_{j+1}$. Thus $\underline{A} \vec{x} \in V_{j+1} \cap M=\{\overrightarrow{0}\}$ (since the sum of these two subspaces is assumed direct). Therefore, $\vec{x}=\overrightarrow{0}$, since $\left.\underline{A}\right|_{L}$ is an isomorphism.
(B) $\left(V_{j}+N_{j}\right)+L=V_{j-1}$: Let $\vec{w} \in V_{j-1}$. Then $\underline{A} \vec{w} \in V_{j}$, so $\underline{A} \vec{w}=\vec{v}+\vec{m}$ where $\vec{v} \in V_{j+1}, \vec{m} \in M$. Then $\vec{v}=\underline{A} \vec{u}$ (for some $\vec{u} \in V_{j}$), and $\vec{m}=\underline{A} \vec{l}$ (for some $\vec{l} \in L$). That is, $\underline{A} \vec{w}=\underline{A} \vec{u}+\underline{A} \vec{l}$, where $\vec{w}, \vec{u}, \vec{l} \in V_{j-1}$. Thus $\vec{w}-\vec{u}-\vec{l} \in N_{j} \equiv \operatorname{ker}\left(\left.\underline{A}\right|_{V_{j-1}}\right)$. Therefore, $\vec{w} \in N_{j}+V_{j}+L, ~ Q E D$.

Uniqueness: Obviously Jordan blocks can be placed on the diagonal in any order each arrangement corresponding to a certain permutation of basis vectors. Beyond this, however, the JCF of \underline{A} is unique - it's characterized by listing the lengths of all Jordan chains associated with each $\lambda_{\nu} \in \sigma(\underline{A})$. The reason is that these lengths are determined by the dimensions of the spaces V_{j} for the operator $\underline{A}-\lambda_{\nu}$, which are defined independently of any choice of basis. Indeed, let $s_{j}(j=1, \ldots, h)$ be the number of chains of length j in \mathcal{U}_{ν}. Then

$$
\begin{aligned}
\operatorname{dim} \mathcal{V}-\operatorname{dim} V_{1} & =\operatorname{dim}\left(\tilde{N}_{1} \oplus L_{1}\right) \\
& =s_{1}+\cdots+s_{L}
\end{aligned}
$$

(these are the vectors at the tail ends of chains);

$$
\begin{aligned}
\operatorname{dim} V_{1}-\operatorname{dim} V_{2} & =\operatorname{dim}\left(\tilde{N}_{2} \oplus L_{2}\right) \\
& =s_{2}+\cdots+s_{L}
\end{aligned}
$$

(these are the vectors second from the end of a chain);

$$
\begin{aligned}
& \vdots \\
\operatorname{dim} V_{h-1}-\operatorname{dim} V_{h} & =\operatorname{dim} \tilde{N}_{h} \\
& =s_{h}
\end{aligned}
$$

(these are the eigenvectors at the heads of chains of the maximum length, h). These equations can be solved for the s_{j}.

