
The Galperin–Waksman proof of Jordan canonical form

It suffices to prove:

Lemma 1. If 0 ∈ σ(A), then there exists a basis with respect to which

A =





















B 0

0

0 1 0
0 0

0 1

0
. . .

0
. . .





















.

Here the bottom right block is in Jordan canonical form with diagonal elements all equal to
0, and the matrix B is nonsingular, except when it is nonexistent (i.e., when σ(A) = {0}).

Proof of theorem from Lemma 1: Argue by induction on dim V. Choose λ ∈ σ(A)
and apply the lemma to A− λ in the role of A. Choose the basis for dom B so as to put
B into Jordan canonical form. (This is possible by the inductive hypothesis. If dimV = 1
(the start of the induction), then the Jordan theorem is trivial.) The result is a Jordan
form for A− λ. Add λ (times 1) to get a Jordan form for A. (Note that λ doesn’t appear
as an eigenvalue of B + λ, since B is nonsingular.)

Proof of lemma: Let V1 = ran A. (Note that this and other subspaces will not be
denoted by script letters in this proof. V1 should not be confused with V(λ1).) Since A is
singular, V1 6= V0 ≡ V.

Let V2 ≡ ran
(

A
∣

∣

V1

)

≡ image of V1 under A;

...
Vj ≡ ran

(

A
∣

∣

Vj−1

)

≡ A [Vj−1] = ranAj ;

...

Note by induction that Vj ⊆ Vj−1 (i.e., A[Vj−1] ⊆ A[Vj−2]).

Since dim V < ∞, eventually ∃h : Vh = Vh+1 = Vh+2 = . . . . Thus B ≡ A
∣

∣

Vh
is

nonsingular, with ranB = domB = Vh . For j ≤ h, we have Vj ⊂ Vj−1 properly.

Let Nj ≡ ker
(

A
∣

∣

Vj−1

)

. Then Vj + Nj ⊂ Vj−1 . [A peek ahead: Vectors in Nj are,

of course, 0-eigenvectors of A. Eventually it will be seen that they are those eigenvectors
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that stand at the head of a Jordan chain of j vectors; e.g., for







0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0






,

the first row and column belong to a basis vector in N3 , the last row and column to one
in N1 .] The sum Vj +Nj need not be direct (i.e., Vj ∩Nj 6= {~0}, perhaps). Let Ñj ⊂ Nj

be a direct complement of Vj within Vj +Nj — so that Vj ⊕ Ñj = Vj +Nj ⊂ Vj−1 .

Now Vj ⊕ Ñj need not be all of Vj−1 . However, if j = h, then it is: If ~w ∈ Vh−1 , then

A~w ∈ Vh = Vh+1, so A~w = A~x for some ~x ∈ Vh ⊂ Vh−1. Therefore A(~w − ~x) = ~0, and
~w − ~x ∈ Vh−1 ; that is, ~n ≡ ~w − ~x ∈ Nh . Thus ~w = ~x + ~n, where ~x ∈ Vh and ~n ∈ Nh , as
claimed. (Incidentally, in this case Ñh = Nh , since Vh can’t contain kernel vectors.)

Thus we have Vh−1 = Vh ⊕ Ñh and also Vh−1 ⊕ Ñh−1 ⊂ Vh−2 . I claim that

Vh−2 = Vh−1 ⊕ Ñh−1 ⊕ Lh−1 ,

where Lh−1 is a subspace which A maps isomorphically onto Ñh . [Thus an element of
Lh−1 is the second vector in a Jordan chain of h vectors.] (Proof of claim postponed to
end of proof.) We next look at Vh−2 ⊕ Ñh−2 ⊂ Vh−3 . I claim (again postponing proof)
that

Vh−3 = Vh−2 ⊕ Ñh−2 ⊕ Lh−2 ,

where A maps Lh−2 isomorphically onto Ñh−1⊕Lh−1 . [Thus an element of Lh−2 is either
the second vector in a Jordan chain of length h−1, or the third vector in a chain of length
h.] We continue in this way until we get to V0 ≡ V. Thus we have a decomposition

V = V1 ⊕ Ñ1 ⊕ L1

= V2 ⊕ Ñ2 ⊕ L2 ⊕ Ñ1 ⊕ L1

= . . .

= Vh ⊕ Ñh ⊕ Ñh−1 ⊕ Lh−1 ⊕ · · · ⊕ Ñ1 ⊕ L1
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And the action of A on these subspaces is

0

0 Ñh Vh

0 Ñh−1 Lh−1

Ñh−2 Lh−2

0
...

...

0 Ñ3 L3

0 Ñ2 L2

Ñ1 L1

To get a Jordan basis, start by choosing a basis for each Ñj ; let the basis for Lh−1 be

the inverse images of the basis vectors for Ñh ; let the basis vectors for Lh−2 be the inverse
images of the basis vectors for Ñh−1 ⊕ Lh−1 ; etc. The matrix of A with respect to this
basis has the form claimed in the lemma (with Vh = domB). Indeed, the basis vectors in
each chain of inverse images belong to a single Jordan block





















Ñj 0 1 0
Lj−1 0 1
Lj−2 0 1
...

. . .
. . .

L2

. . . 1

L1 0 0





















.

It remains to prove the “claims”:

Lemma 2. If Vj = Vj+1 ⊕ M , then ∃L ⊂ Vj−1 such that Vj−1 = (Vj + Nj) ⊕ L and A

maps L isomorphically onto M . (This has been applied in cases where M ≡ Ñj+1 ⊕Lj+1 ;

we then used the fact that Vj +Nj = Vj ⊕ Ñj .)

Proof: Choose a basis {~y1, . . . , ~ym} for M . Since M ⊂ Vj ≡ ran
(

A
∣

∣

Vj−1

)

, ∃~z1, . . . , ~zm

∈ Vj−1 such that ~yj = A~zj . The ~z’s are independent, and L ≡ span {~z1, . . . , ~zm} is a
subspace of Vj−1 mapped isomorphically onto M . We need to show:

(A) (Vj +Nj) ∩ L = {~0}: ~x ∈ (Vj +Nj) ∩ L ⇒ ~x = ~v + ~n and A~x ∈ M ; the first of

these implies A~x = A~v + A~n = A~v ∈ Vj+1 . Thus A~x ∈ Vj+1 ∩M = {~0} (since the sum of

these two subspaces is assumed direct). Therefore, ~x = ~0, since A
∣

∣

L
is an isomorphism.
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(B) (Vj +Nj) + L = Vj−1: Let ~w ∈ Vj−1 . Then A~w ∈ Vj , so A~w = ~v + ~m where

~v ∈ Vj+1, ~m ∈ M . Then ~v = A~u (for some ~u ∈ Vj), and ~m = A~l (for some ~l ∈ L). That

is, A~w = A~u+A~l, where ~w, ~u,~l ∈ Vj−1 . Thus ~w− ~u−~l ∈ Nj ≡ ker
(

A
∣

∣

Vj−1

)

. Therefore,

~w ∈ Nj + Vj + L, QED.

Uniqueness: Obviously Jordan blocks can be placed on the diagonal in any order —
each arrangement corresponding to a certain permutation of basis vectors. Beyond this,
however, the JCF of A is unique — it’s characterized by listing the lengths of all Jordan
chains associated with each λν ∈ σ(A). The reason is that these lengths are determined by
the dimensions of the spaces Vj for the operator A− λν , which are defined independently
of any choice of basis. Indeed, let sj (j = 1, . . . , h) be the number of chains of length j in
Uν . Then

dim V − dim V1 = dim (Ñ1 ⊕ L1)

= s1 + · · ·+ sL

(these are the vectors at the tail ends of chains);

dim V1 − dim V2 = dim(Ñ2 ⊕ L2)

= s2 + · · ·+ sL

(these are the vectors second from the end of a chain);

...

dim Vh−1 − dim Vh = dim Ñh

= sh

(these are the eigenvectors at the heads of chains of the maximum length, h). These
equations can be solved for the sj .
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