It suffices to prove:

LEMMA 1. If $0 \in \sigma(\underline{A})$, then there exists a basis with respect to which

$$A = \begin{pmatrix} \mathbf{B} & | & \mathbf{0} & \\ - & | & \mathbf{0} & \mathbf{0} & \\ 0 & | & \mathbf{0} & \mathbf{0} & \\ 0 & | & \mathbf{0} & \mathbf{1} & \\ - & \mathbf{0} & \mathbf{0} & \mathbf{1} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \\ 0 & - & \mathbf{0} & \mathbf{0$$

Here the bottom right block is in Jordan canonical form with diagonal elements all equal to 0, and the matrix B is nonsingular, except when it is nonexistent (i.e., when $\sigma(\underline{A}) = \{0\}$).

PROOF OF THEOREM FROM LEMMA 1: Argue by induction on dim \mathcal{V} . Choose $\lambda \in \sigma(\underline{A})$ and apply the lemma to $\underline{A} - \lambda$ in the role of \underline{A} . Choose the basis for dom \underline{B} so as to put B into Jordan canonical form. (This is possible by the inductive hypothesis. If dim $\mathcal{V} = 1$ (the start of the induction), then the Jordan theorem is trivial.) The result is a Jordan form for $\underline{A} - \lambda$. Add λ (times 1) to get a Jordan form for \underline{A} . (Note that λ doesn't appear as an eigenvalue of $\underline{B} + \lambda$, since \underline{B} is nonsingular.)

PROOF OF LEMMA: Let $V_1 = \operatorname{ran} \underline{A}$. (Note that this and other subspaces will not be denoted by script letters in this proof. V_1 should not be confused with $\mathcal{V}(\lambda_1)$.) Since \underline{A} is singular, $V_1 \neq V_0 \equiv \mathcal{V}$.

Let $V_2 \equiv \operatorname{ran}\left(\underline{A}\big|_{V_1}\right) \equiv \operatorname{image of} V_1 \text{ under } \underline{A};$

$$\begin{array}{l}
\vdots \\
V_{j} \equiv \operatorname{ran} \left(\underline{A} \Big|_{V_{j-1}} \right) \equiv \underline{A} \left[V_{j-1} \right] = \operatorname{ran} \underline{A}^{j};
\end{array}$$

Note by induction that $V_j \subseteq V_{j-1}$ (i.e., $\underline{A}[V_{j-1}] \subseteq \underline{A}[V_{j-2}]$).

Since dim $\mathcal{V} < \infty$, eventually $\exists h : V_h = V_{h+1} = V_{h+2} = \dots$ Thus $\underline{B} \equiv \underline{A}|_{V_h}$ is nonsingular, with ran $\underline{B} = \operatorname{dom} \underline{B} = V_h$. For $j \leq h$, we have $V_j \subset V_{j-1}$ properly.

Let $N_j \equiv \ker \left(\underline{A}\Big|_{V_{j-1}}\right)$. Then $V_j + N_j \subset V_{j-1}$. [A peek ahead: Vectors in N_j are, of course, 0-eigenvectors of \underline{A} . Eventually it will be seen that they are those eigenvectors

that stand at the head of a Jordan chain of j vectors; e.g., for

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

the first row and column belong to a basis vector in N_3 , the last row and column to one in N_1 .] The sum $V_j + N_j$ need not be direct (i.e., $V_j \cap N_j \neq \{\vec{0}\}$, perhaps). Let $\tilde{N}_j \subset N_j$ be a direct complement of V_j within $V_j + N_j$ — so that $V_j \oplus \tilde{N}_j = V_j + N_j \subset V_{j-1}$.

Now $V_j \oplus \tilde{N}_j$ need not be all of V_{j-1} . However, if j = h, then it is: If $\vec{w} \in V_{h-1}$, then $\underline{A}\vec{w} \in V_h = V_{h+1}$, so $\underline{A}\vec{w} = \underline{A}\vec{x}$ for some $\vec{x} \in V_h \subset V_{h-1}$. Therefore $\underline{A}(\vec{w} - \vec{x}) = \vec{0}$, and $\vec{w} - \vec{x} \in V_{h-1}$; that is, $\vec{n} \equiv \vec{w} - \vec{x} \in N_h$. Thus $\vec{w} = \vec{x} + \vec{n}$, where $\vec{x} \in V_h$ and $\vec{n} \in N_h$, as claimed. (Incidentally, in this case $\tilde{N}_h = N_h$, since V_h can't contain kernel vectors.)

Thus we have $V_{h-1} = V_h \oplus \tilde{N}_h$ and also $V_{h-1} \oplus \tilde{N}_{h-1} \subset V_{h-2}$. I claim that

$$V_{h-2} = V_{h-1} \oplus N_{h-1} \oplus L_{h-1},$$

where L_{h-1} is a subspace which <u>A</u> maps isomorphically onto \tilde{N}_h . [Thus an element of L_{h-1} is the *second* vector in a Jordan chain of h vectors.] (Proof of claim postponed to end of proof.) We next look at $V_{h-2} \oplus \tilde{N}_{h-2} \subset V_{h-3}$. I claim (again postponing proof) that

$$V_{h-3} = V_{h-2} \oplus \tilde{N}_{h-2} \oplus L_{h-2} ,$$

where <u>A</u> maps L_{h-2} isomorphically onto $\tilde{N}_{h-1} \oplus L_{h-1}$. [Thus an element of L_{h-2} is either the second vector in a Jordan chain of length h-1, or the third vector in a chain of length h.] We continue in this way until we get to $V_0 \equiv \mathcal{V}$. Thus we have a decomposition

$$\mathcal{V} = V_1 \oplus \tilde{N}_1 \oplus L_1$$

= $V_2 \oplus \tilde{N}_2 \oplus L_2 \oplus \tilde{N}_1 \oplus L_1$
= ...
= $V_h \oplus \tilde{N}_h \oplus \tilde{N}_{h-1} \oplus L_{h-1} \oplus \dots \oplus \tilde{N}_1 \oplus L_1$

And the action of \underline{A} on these subspaces is

To get a Jordan basis, start by choosing a basis for each \tilde{N}_j ; let the basis for L_{h-1} be the inverse images of the basis vectors for \tilde{N}_h ; let the basis vectors for L_{h-2} be the inverse images of the basis vectors for $\tilde{N}_{h-1} \oplus L_{h-1}$; etc. The matrix of <u>A</u> with respect to this basis has the form claimed in the lemma (with $V_h = \text{dom } \underline{B}$). Indeed, the basis vectors in each chain of inverse images belong to a single Jordan block

It remains to prove the "claims":

LEMMA 2. If $V_j = V_{j+1} \oplus M$, then $\exists L \subset V_{j-1}$ such that $V_{j-1} = (V_j + N_j) \oplus L$ and <u>A</u> maps L isomorphically onto M. (This has been applied in cases where $M \equiv \tilde{N}_{j+1} \oplus L_{j+1}$; we then used the fact that $V_j + N_j = V_j \oplus \tilde{N}_j$.)

PROOF: Choose a basis $\{\vec{y}_1, \ldots, \vec{y}_m\}$ for M. Since $M \subset V_j \equiv \operatorname{ran}\left(\underline{A}\Big|_{V_{j-1}}\right), \exists \vec{z}_1, \ldots, \vec{z}_m \in V_{j-1}$ such that $\vec{y}_j = \underline{A}\vec{z}_j$. The \vec{z} 's are independent, and $L \equiv \operatorname{span}\left\{\vec{z}_1, \ldots, \vec{z}_m\right\}$ is a subspace of V_{j-1} mapped isomorphically onto M. We need to show:

(A) $(V_j + N_j) \cap L = \{\vec{0}\}: \vec{x} \in (V_j + N_j) \cap L \Rightarrow \vec{x} = \vec{v} + \vec{n} \text{ and } \underline{A}\vec{x} \in M; \text{ the first of these implies } \underline{A}\vec{x} = \underline{A}\vec{v} + \underline{A}\vec{n} = \underline{A}\vec{v} \in V_{j+1} \text{ . Thus } \underline{A}\vec{x} \in V_{j+1} \cap M = \{\vec{0}\} \text{ (since the sum of these two subspaces is assumed direct). Therefore, <math>\vec{x} = \vec{0}, \text{ since } \underline{A}|_L$ is an isomorphism.

(B) $(V_j + N_j) + L = V_{j-1}$: Let $\vec{w} \in V_{j-1}$. Then $\underline{A}\vec{w} \in V_j$, so $\underline{A}\vec{w} = \vec{v} + \vec{m}$ where $\vec{v} \in V_{j+1}$, $\vec{m} \in M$. Then $\vec{v} = \underline{A}\vec{u}$ (for some $\vec{u} \in V_j$), and $\vec{m} = \underline{A}\vec{l}$ (for some $\vec{l} \in L$). That is, $\underline{A}\vec{w} = \underline{A}\vec{u} + \underline{A}\vec{l}$, where $\vec{w}, \vec{u}, \vec{l} \in V_{j-1}$. Thus $\vec{w} - \vec{u} - \vec{l} \in N_j \equiv \ker\left(\underline{A}\Big|_{V_{j-1}}\right)$. Therefore, $\vec{w} \in N_j + V_j + L$, QED.

UNIQUENESS: Obviously Jordan blocks can be placed on the diagonal in any order — each arrangement corresponding to a certain permutation of basis vectors. Beyond this, however, the JCF of <u>A</u> is unique — it's characterized by listing the lengths of all Jordan chains associated with each $\lambda_{\nu} \in \sigma(\underline{A})$. The reason is that these lengths are determined by the dimensions of the spaces V_j for the operator $\underline{A} - \lambda_{\nu}$, which are defined independently of any choice of basis. Indeed, let s_j $(j = 1, \ldots, h)$ be the number of chains of length j in \mathcal{U}_{ν} . Then

$$\dim \mathcal{V} - \dim V_1 = \dim (N_1 \oplus L_1)$$
$$= s_1 + \dots + s_L$$

(these are the vectors at the tail ends of chains);

$$\dim V_1 - \dim V_2 = \dim(N_2 \oplus L_2)$$
$$= s_2 + \dots + s_L$$

(these are the vectors second from the end of a chain);

(these are the eigenvectors at the heads of chains of the maximum length, h). These equations can be solved for the s_j .