The Galperin—Waksman proof of Jordan canonical form
It suffices to prove:

LEMMA 1. If 0 € 0(A), then there exists a basis with respect to which

B | 0

0

o O
O =

0

Here the bottom right block is in Jordan canonical form with diagonal elements all equal to
0, and the matrix B is nonsingular, except when it is nonexistent (i.e., when o(A) = {0}).

PROOF OF THEOREM FROM LEMMA 1: Argue by induction on dim V. Choose X € o(A)
and apply the lemma to A — X in the role of A. Choose the basis for dom B so as to put
B into Jordan canonical form. (This is possible by the inductive hypothesis. If dimV =1
(the start of the induction), then the Jordan theorem is trivial.) The result is a Jordan
form for A — A. Add A (times 1) to get a Jordan form for A. (Note that A\ doesn’t appear
as an eigenvalue of B + A, since B is nonsingular.)

PROOF OF LEMMA: Let V3 = ran A. (Note that this and other subspaces will not be
denoted by script letters in this proof. V; should not be confused with V(\1).) Since A is
singular, V7 # Vo, = V.

Let V5 =ran (A‘w) = image of V; under A;

Vi=ran (4, )= A[V; ] = ran 4%
Note by induction that V; C V;_; (i.e., A[V;_1] C A[V;_2]).

Since dim V < oo, eventually 3h : Vj, = V41 = Vo = ... Thus B = A‘Vh is
nonsingular, with ran B = dom B =V}, . For j < h, we have V; C V;_; properly.

Let N; = ker <A}V‘_1). Then V; + N; C V;_1. [A peek ahead: Vectors in N; are,

of course, 0-eigenvectors of A. Eventually it will be seen that they are those eigenvectors
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that stand at the head of a Jordan chain of j vectors; e.g., for

OO OO
O O O
OO = O
OO OO

the first row and column belong to a basis vector in N3, the last row and column to one
in N;.] The sum V; + N; need not be direct (i.e., V; N N; # {0}, perhaps). Let N; C NN;
be a direct complement of V; within V; + N; —sothat V; @ N; =V, + N; C V;_;.

Now V; @ Nj need not be all of V;_; . However, if j = h, then it is: If W € V},_; , then
Al € Vi = Vg, so Aw = A7 for some & € V), C Vj—1. Therefore A(w — ) = 0, and
W—=2 € Vy_1;thatis, 7 =@ — & € N. Thus & = ¥ + 177, where Z € V}, and 71 € Ny, as
claimed. (Incidentally, in this case N, = Ny, since V}, can’t contain kernel vectors.)

Thus we have Vj,_1 =V, ® Nh and also Vj,_1 @ Nh_l C Vj—a. I claim that
Viieo =Viho1 ® N1 ® Li_1,

where Lj_1 is a subspace which A maps isomorphically onto N, . [Thus an element of
Ly is the second vector in a Jordan chain of h vectors.] (Proof of claim postponed to
end of proof.) We next look at Vj,_o @ Np_o C Vj,_3. I claim (again postponing proof)
that

Vies =Viea ® Np_o® Li_o,

where A maps Lj,_o isomorphically onto N h—1® Lp—1. [Thus an element of Lj_5 is either
the second vector in a Jordan chain of length h — 1, or the third vector in a chain of length
h.] We continue in this way until we get to ¥ = V. Thus we have a decomposition

V=Vi®&N &I
=Vo® N ® Ly ® N, @ Ly

—ViONyON, 1B Ly 1@ ON, @ Ly



And the action of A on these subspaces is

0

0 N Vi

0 N1 Ly
Np_2 Ly

0

0 Ns Ls

0 N Ly
N, L,

To get a Jordan basis, start by choosing a basis for each Nj ; let the basis for Lj,_1 be
the inverse images of the basis vectors for Nh ; let the basis vectors for Lj_s be the inverse
images of the basis vectors for Nh_l @ Lp_1; etc. The matrix of A with respect to this
basis has the form claimed in the lemma (with V}, = dom B). Indeed, the basis vectors in
each chain of inverse images belong to a single Jordan block

N; 0 1 0
Lj 0 1

Lj_s 0 1

L2 1
n \0 0

It remains to prove the “claims”:

LEMMA 2. If V; = V11 @ M, then 3L C V;_; such that V;_; = (V; + N;) @ L and A
maps L isomorphically onto M. (This has been applied in cases where M = N1 @ Lji1;
we then used the fact that V; + N; =V, @ ;)

PRrROOF: Choose a basis {#1,...,¥m} for M. Since M C V; = ran (A‘Vq), o DA

€ V;_1 such that §; = AZ;. The Z’s are independent, and L = span {%},...,2,} is a
subspace of V;_; mapped isomorphically onto M. We need to show:

(A) (V; +N)NL={0}: € (V;+N;)NL = &=+ and AT € M; the first of
these implies A¥ = AU+ A = AV € V11 . Thus A% € V]H N M = {0} (since the sum of
these two subspaces is assumed direct). Therefore, Z = 0, since A‘ ; is an isomorphism.
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(B) (V;+N;)+L=V;_q: Let & € V;_;. Then Aw € V;, so AW = U + m where
7€ Viyr, m € M. Then v = Au (for some 4 € V;), and m = Al (for some I € L). That
is, A = A + Al, where @, 1,1 € Vi—1. Thus & — @ — l'e N, = ker (A‘Vj_1>. Therefore,
we N;+V;+ L, QED.

UNIQUENESS: Obviously Jordan blocks can be placed on the diagonal in any order —
each arrangement corresponding to a certain permutation of basis vectors. Beyond this,
however, the JCF of A is unique — it’s characterized by listing the lengths of all Jordan
chains associated with each A, € o(A). The reason is that these lengths are determined by
the dimensions of the spaces V; for the operator A — A, , which are defined independently
of any choice of basis. Indeed, let s; (j =1,...,h) be the number of chains of length j in
U, . Then

=514 45z

(these are the vectors at the tail ends of chains);

= sy + -+ s

(these are the vectors second from the end of a chain);

dim Vh—l — dim Vh = dim Nh

(these are the eigenvectors at the heads of chains of the maximum length, h). These
equations can be solved for the s; .



