
Kernel and range

Definition: The kernel (or null-space) of A is

ker A ≡ {~v ∈ V : A~v = ~0 (∈ U)}.

Theorem 15.3. ker A is a subspace of V. (In particular, it always contains ~0V .)

Definition: A is one-to-one (or injective, or regular) if

A~v1 = A~v2 ⇒ ~v1 = ~v2.

It suffices to check the case A~v1 = ~0:

Theorem 15.4. A linear operator A is injective iff ker A = {~0}.

Proof:

⇒: trivial (special case).

⇐: A~v1 = A~v2 ⇒ A(~v1 − ~v2) = ~0 ⇒ ~v1 − ~v2 ∈ ker A ⇒ ~v1 = ~v2.

[Pulling everything back to ~0 is a standard trick in dealing with linear operators; recall
solution of inhomogeneous ODE via solution of homogeneous ODE.]

Definition: A homogeneous linear equation is an equation of the formA~v = ~0 (A linear).

Thus its solutions are precisely the elements of the kernel of A.

Definition: An inhomogeneous linear equation is one of the form A~v = ~b (~b ∈ U given).

Thus we can reformulate and sharpen Theorem 15.4: If the corresponding homo-
geneous equation has nontrivial ( 6= ~0) solutions, then the solution of an inhomogeneous
equation is nonunique (if it exists), and conversely.

The existence question is related to another concept:

Definition: The range of A is

ran A ≡ {~u ∈ U : ∃~v ∈ V such that A~v = ~u}.
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Theorem 15.6. ran A is a subspace of U .

Thus the range of A is precisely those elements ~b of U for which the inhomogeneous
equation A~v = ~b has solutions.

Definition: A is onto U (or surjective) if ran A = U .

Theorem 15.8. dim dom A = dim ker A+ dim ran A.

Proof: For the moment assume that V (≡ dom A) is finite-dimensional. Pick a basis for
ker A and extend it to a basis for V:

{~w1, . . . , ~wp, ~vp+1, . . . , ~vn} (p ≡ dim ker A).

Consider the images,

{A~w1, . . . , A~wp︸ ︷︷ ︸
all=~0

, A~vp+1, . . . , A~vn}.

They span ran A; hence {A~vp+1, . . . , A~vn} spans ran A. In fact, this is a basis for ran A:

~0 =
n∑

p+1

λjA~vj = A
(∑

λj~vj

)
⇒
∑

λj~vj ∈ ker A ⇒ λj = 0

(since ~vj (for j > p) is independent of ker A). Therefore, dim ran A = n− p = dim dom
− dim ker. QED.

If dim V = ∞, we need only to show that dim ker < ∞ ⇒ dim ran = ∞. Assume
to the contrary that {~w1, . . . , ~wp} is a basis for ker A and {A~vp+1, . . . , A~vq} is a basis for
ran A. Let ~vq+1 be a vector independent of {~w1, . . . , ~vq}. Then A~vq+1 =

∑q
p+1 λ

j(A~vj) ⇒
~vq+1 −

∑
λj~vj ∈ ker A, contradicting linear independence of {~w1, . . . , . . . , ~vq+1}.

Finally, the converse — that infinite-dimensional range implies infinite-dimensional
domain — is left as an exercise.

Corollary 15.7. dim ran A ≤ min(dimV, dimU).

Definition: dim ran A is called the rank of A.

Remark: rank A = dimension of the subspace of Rn spanned by the columns of the
matrix A. By a later theorem, the column rank equals the row rank of the matrix.
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Corollary 15.10. If dim V = dimU <∞, then A is injective if and only if it is surjective.

Cf. the theorem that a set of dim V vectors is linearly independent iff it spans.

Proof: injective ⇐⇒ dim ker = 0 ⇐⇒ dim ran = dim V ⇐⇒ surjective (since ran
A ⊆ U).

Counterexample to Cor. 15.10 if dim V = dimU = ∞: V = U = space of sequences
(u1, u2, . . . ); U1 = space of sequences with u1 = 0; A = right shift operator:

A(u1, u2, . . . ) = (0, u1, u2, . . . ).

Then ran A = U1, and A is injective. It is obviously not surjective, despite the fact that its
range has the same dimension as V (even after the distinctions among transfinite cardinal
numbers are taken into account).

Rank: a closer look

dim ran A+ dim ker A = dim dom A = n (fixed).

Therefore, kernel increases ⇒ range decreases. The rank of A is thus a doubly
important characteristic of A.

Note: rank A = dim ran A = codim ker A. If m = n, then dim ker A = codim ran A.

Let’s look at this more concretely. Let m = n = 3. We find the kernel by reducing
matrix A to row echelon form, Ared.

Case I: Ared =

 1 ∗ ∗
0 1 ∗
0 0 1

 (A nonsingular).

A~v = ~0 has unique solution ~v = ~0. Thus dim ker = 0. A~v = ~b translates into an augmented

matrix

 1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

, hence uniquely solvable equations for v3, v2, v1. Thus dim ran

= 3, consistent with dim ker = 0.

Case II: Ared =

 1 ∗ ∗
0 1 ∗
0 0 0

. Thus dim ker = 1 (v3 arbitrary).

 1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 ξ

 ⇒ A~v = ~b solvable iff ξ = 0. Thus ran A has codim 1; dim ran = 2.
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What are the other cases?

III.

 1 ∗ ∗
0 0 1
0 0 0

 IV.

 0 1 ∗
0 0 1
0 0 0


(II–IV are rank 2.)

V.

 1 ∗ ∗
0 0 0
0 0 0

 VI.

 0 1 ∗
0 0 0
0 0 0

 VII.

 0 0 1
0 0 0
0 0 0


(V–VII are rank 1.)

VIII.

 0 0 0
0 0 0
0 0 0


VIII is rank 0. (It was the 0 matrix all along.)

General observation:

Ared =


0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 0 0


1) Row rank of A = number of nonzero rows of Ared.

2) dim ker A = n− number of nontrivial homogeneous equations

= n− row rank.

But Theorem 15.8 says dim ker = n−
dim ran︷ ︸︸ ︷

column rank.

Therefore, row rank = column rank.

(This argument can be made into a complete proof, but we’ll find a slicker proof later —
Sec. 18.)

3) To see directly what dim ran is, consider solving the inhomogeneous equation, A~v = ~b,

by the augmented matrix, encountering
(
Ared | ~ξ

)
. Each zero row of Ared gives a

constraint on ~ξ, hence on ~b. Each remaining row gives a solvable equation. Thus dim
ran = number of nontrivial rows = row rank.
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What happens for an m× n matrix with m 6= n (i.e., number of equations 6= number
of unknowns)? As a crude rule of thumb, we expect

m > n ⇒ no solution.

m < n ⇒ solution not unique.

But we know there are exceptions. Let’s see why:

(1) m > n ⇒ Ared has zero-rows:


1 0 | ξ1

0 1 | ξ2

0 0 | ξ3

0 0 | ξ4

 If the ξ’s next to the zeros are nonzero

(the generic case), there is no solution — in accord with the rule of thumb. If all of
those ξ’s are 0, then some of the original equations were redundant. Therefore, the
system was “really” m′ × n, where m′ ≤ n. We know from the case m′ = n that now
there can be one solution, or many, or none.

(2) m < n: The typical case is nonuniqueness:

(
1 0 ∗ | ξ1

0 1 ∗ | ξ2

)
. (Here v3 is ar-

bitrary.) Thus dim ker > 0, dim ran ≤ m < n. But there may be no solution:(
1 ∗ ∗ | ξ1

0 0 0 | ξ2

)
. Here dim ran < m, dim ker > 1. Is it ever possible to have a

unique solution? [Hint: Consider the homogeneous case. Recall a homework exercise.]

Linear transformations as vectors

L(V;U) ≡ set of linear maps A : V → U .

Sums and scalar multiples of such are defined in the usual way for functions. This makes
L(V;U) a vector space.

Theorem 16.1. dim L(V;U) = mn (=∞ if m or n =∞).

Proof: The infinite-dimensional case is left as an exercise. In the finite-dimensional case,
we have seen that L is isomorphic to the m × n matrices. A basis for the latter space is

obviously

 0 0 0 0
0 0 1 0
0 0 0 0

 etc., which has mn elements. (The proof on pp. 84–85 of Bowen

& Wang is the same — it just looks different.)

We turn next to a precise definition of “isomorphic”, which we have been using (as
here) informally.
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