Kernel and range

Definition: The kernel (or null-space) of A is

ker A={TecV: AT=0(cU)}.

THEOREM 15.3. ker A is a subspace of V. (In particular, it always contains 6\;)

Definition: A is one-to-one (or injective, or regular) if

Aﬁl :Aﬁg = 171 = 172.

It suffices to check the case Ad; = 0:
Theorem 15.4. A linear operator A is injective iff ker A = {0}.

PROOF:
= trivial (special case).
e AT = ATy = A0 —Ta) =0 = 0, —Th €ker A = ¥ = .

[Pulling everything back to 0 is a standard trick in dealing with linear operators; recall
solution of inhomogeneous ODE via solution of homogeneous ODE.]

Definition: A homogeneous linear equation is an equation of the form Av = 0 (A linear).

Thus its solutions are precisely the elements of the kernel of A.

—

Definition: An inhomogeneous linear equation is one of the form Av = b (b € U given).

Thus we can reformulate and sharpen Theorem 15.4: If the corresponding homo-
geneous equation has nontrivial (# 0) solutions, then the solution of an inhomogeneous
equation is nonunique (if it exists), and conversely.

The existence question is related to another concept:

Definition: The range of A is

ran A= {u € U : 30 € V such that A0 = u}.



THEOREM 15.6. ran A is a subspace of U.

Thus the range of A is precisely those elements b of U for which the inhomogeneous
equation Av = b has solutions.

Definition: A is onto U (or surjective) if ran A =U.
Theorem 15.8. dim dom A = dim ker A+ dim ran A.

ProOOF: For the moment assume that V (= dom A) is finite-dimensional. Pick a basis for
ker A and extend it to a basis for V:

{W1,... Wy, Upt1,...,0Un} (p = dim ker A).

Consider the images,

They span ran A; hence {Avp41,..., A, } spans ran A. In fact, this is a basis for ran A:
0=Y VAT =A(Y V7)) = S NG cker A = N =0
p+1

(since v (for j > p) is independent of ker A). Therefore, dim ran A =n — p = dim dom
— dim ker. QED.

If dim V = oo, we need only to show that dim ker < co = dim ran = oco. Assume

to the contrary that {,... ,w,} is a basis for ker A and {A¥U,11,...,AV,} is a basis for
ran A. Let ﬁq“ be a vector independent of {1, ... ,¥;}. Then Aty =Y 0, NV (AT;) =
Ug+1 — »_ MU € ker A, contradicting linear independence of {w,... ..., Ust1}.

Finally, the converse — that infinite-dimensional range implies infinite-dimensional
domain — is left as an exercise.

COROLLARY 15.7. dim ran A < min(dim V, dim#).

DEFINITION: dim ran A is called the rank of A.

REMARK: rank A = dimension of the subspace of R"™ spanned by the columns of the
matrix A. By a later theorem, the column rank equals the row rank of the matrix.



Corollary 15.10. If dimV = dimU < oo, then A is injective if and only if it is surjective.

Cf. the theorem that a set of dim V vectors is linearly independent iff it spans.

PROOF: injective <= dimker =0 <= dimran =dim )V <= surjective (since ran
AcU).

COUNTEREXAMPLE to Cor. 15.10 if dim V = dimU = oo: V = U = space of sequences

(ul,u?,...); U' = space of sequences with u! = 0; A = right shift operator:

At u?,.0) = (0,ul,u?, .00,

Then ran A = U;, and A is injective. It is obviously not surjective, despite the fact that its
range has the same dimension as V (even after the distinctions among transfinite cardinal
numbers are taken into account).

RANK: A CLOSER LOOK

dim ran A + dim ker A = dim dom A = n (fixed).

Therefore, kernel increases = range decreases. The rank of A is thus a doubly
important characteristic of A.

Note: rank A = dim ran A = codim ker A. If m = n, then dim ker A = codim ran A.

Let’s look at this more concretely. Let m = n = 3. We find the kernel by reducing
matrix A to row echelon form, A,.q.

Case I: Ayeq = (A nonsingular).

OO =
O~ %
— % %

A% = 0 has unique solution ¥ = 0. Thus dim ker = 0. A7 = b translates into an augmented
1 % *x %

matrix [ 0 1 % x* |, hence uniquely solvable equations for v3, v?, v'. Thus dim ran
0 0 1 =«

= 3, consistent with dim ker = 0.

Case II: A;oq = . Thus dim ker = 1 (v® arbitrary).

OO =
O = %
O * %

= Av = b solvable iff £ = 0. Thus ran A has codim 1; dim ran = 2.

o O
O~ ¥

O ¥ ¥

A2 TE S



What are the other cases?

1 % % 0 1 =«
II1. | 0 0 1 IV. |0 0 1
0 0 O 0 0 O
(IT-IV are rank 2.)
1 x x 0 1 =« 0 0 1
V.{0 0 0 VL. {0 0 O VI. |0 0 0
0 0 0 0 0 O 0 0 O
(V-VII are rank 1.)
0 0 O
VIII. {0 0 O
0 0 O
VIII is rank 0. (It was the 0 matrix all along.)
General observation:
0O 1 * * * *x *x
A= 0 0 0 1 * % % =%
edT 0 00 001 x ok %
0 000 0O O0OTUO0OTFDWO

1) Row rank of A = number of nonzero rows of A,eq.
2) dim ker A = n — number of nontrivial homogeneous equations

= n — row rank.

dim ran

——N—
But Theorem 15.8 says dim ker = n — column rank.
Therefore, row rank = column rank.

(This argument can be made into a complete proof, but we’ll find a slicker proof later —
Sec. 18.)

3) To see directly what dim ran is, consider solving the inhomogeneous equation, Av' = g,
by the augmented matrix, encountering (Ared | 5) Each zero row of A,.q gives a

constraint on &, hence on b. Each remaining row gives a solvable equation. Thus dim
ran = number of nontrivial rows = row rank.



What happens for an m x n matrix with m # n (i.e., number of equations # number
of unknowns)? As a crude rule of thumb, we expect

m > n = no solution.
m <n = solution not unique.

But we know there are exceptions. Let’s see why:

1o | &
0 1 | &

(1) m >n = Ajeq has zero-rows: 00 | & If the &’s next to the zeros are nonzero
00 | &

(the generic case), there is no solution — in accord with the rule of thumb. If all of
those &’s are 0, then some of the original equations were redundant. Therefore, the
system was “really” m’ x n, where m’ < n. We know from the case m’ = n that now
there can be one solution, or many, or none.

0 * | £l
0 1 * | &
bitrary.) Thus dim ker > 0, dim ran < m < n. But there may be no solution:

(2) m < n: The typical case is nonuniqueness: < ) (Here v is ar-

1
<é 8 3 ; §2) Here dim ran < m, dim ker > 1. Is it ever possible to have a

unique solution? [Hint: Consider the homogeneous case. Recall a homework exercise. |

Linear transformations as vectors

L(V;U) = set of linear maps A: V — U.

Sums and scalar multiples of such are defined in the usual way for functions. This makes
L(V;U) a vector space.

THEOREM 16.1. dim L(V;U) = mn (= oo if m or n = o0).

PROOF: The infinite-dimensional case is left as an exercise. In the finite-dimensional case,
we have seen that L is isomorphic to the m x n matrices. A basis for the latter space is

0 0 0 0
obviously | 0 0 1 0 | etc., which has mn elements. (The proof on pp. 84-85 of Bowen
0 0 0 O

& Wang is the same — it just looks different.)

We turn next to a precise definition of “isomorphic”, which we have been using (as
here) informally.



