Kernel and range

Definition: The kernel (or null-space) of \underline{A} is

$$
\operatorname{ker} \underline{A} \equiv\{\vec{v} \in \mathcal{V}: \underline{A} \vec{v}=\overrightarrow{0}(\in \mathcal{U})\}
$$

THEOREM 15.3. ker \underline{A} is a subspace of \mathcal{V}. (In particular, it always contains $\overrightarrow{0} \mathcal{V}$.)
Definition: \underline{A} is one-to-one (or injective, or regular) if

$$
\underline{A} \vec{v}_{1}=\underline{A} \vec{v}_{2} \Rightarrow \vec{v}_{1}=\vec{v}_{2} .
$$

It suffices to check the case $\underline{A} \vec{v}_{1}=\overrightarrow{0}$:

Theorem 15.4. A linear operator \underline{A} is injective iff $\operatorname{ker} \underline{A}=\{\overrightarrow{0}\}$.

Proof:

\Rightarrow : trivial (special case).
$\Leftarrow: \underline{A} \vec{v}_{1}=\underline{A} \vec{v}_{2} \Rightarrow \underline{A}\left(\vec{v}_{1}-\vec{v}_{2}\right)=\overrightarrow{0} \Rightarrow \vec{v}_{1}-\vec{v}_{2} \in \operatorname{ker} \underline{A} \Rightarrow \vec{v}_{1}=\vec{v}_{2}$.
[Pulling everything back to $\overrightarrow{0}$ is a standard trick in dealing with linear operators; recall solution of inhomogeneous ODE via solution of homogeneous ODE.]

Definition: A homogeneous linear equation is an equation of the form $\underline{A} \vec{v}=\overrightarrow{0} \quad$ (\underline{A} linear).
Thus its solutions are precisely the elements of the kernel of \underline{A}.
Definition: An inhomogeneous linear equation is one of the form $\underline{A} \vec{v}=\vec{b} \quad(\vec{b} \in \mathcal{U}$ given $)$.
Thus we can reformulate and sharpen Theorem 15.4: If the corresponding homogeneous equation has nontrivial $(\neq \overrightarrow{0})$ solutions, then the solution of an inhomogeneous equation is nonunique (if it exists), and conversely.

The existence question is related to another concept:
Definition: The range of \underline{A} is

$$
\operatorname{ran} \underline{A} \equiv\{\vec{u} \in \mathcal{U}: \exists \vec{v} \in \mathcal{V} \text { such that } \underline{A} \vec{v}=\vec{u}\} .
$$

Theorem 15.6. ran \underline{A} is a subspace of \mathcal{U}.

Thus the range of \underline{A} is precisely those elements \vec{b} of \mathcal{U} for which the inhomogeneous equation $\underline{A} \vec{v}=\vec{b}$ has solutions.

Definition: \underline{A} is onto \mathcal{U} (or surjective) if $\operatorname{ran} \underline{A}=\mathcal{U}$.

Theorem 15.8. $\operatorname{dim} \operatorname{dom} \underline{A}=\operatorname{dim} \operatorname{ker} \underline{A}+\operatorname{dim} \operatorname{ran} \underline{A}$.

Proof: For the moment assume that $\mathcal{V}(\equiv \operatorname{dom} \underline{A})$ is finite-dimensional. Pick a basis for ker \underline{A} and extend it to a basis for \mathcal{V} :

$$
\left\{\vec{w}_{1}, \ldots, \vec{w}_{p}, \vec{v}_{p+1}, \ldots, \vec{v}_{n}\right\} \quad(p \equiv \operatorname{dim} \operatorname{ker} \underline{A}) .
$$

Consider the images,

$$
\{\underbrace{A \vec{w}_{1}, \ldots, \underline{w}_{p}}_{\text {all }=\overrightarrow{0}}, \underline{A}_{\vec{v}_{p+1}}, \ldots, \underline{A} \vec{v}_{n}\} .
$$

They span ran \underline{A}; hence $\left\{\underline{A} \vec{v}_{p+1}, \ldots, \underline{A} \vec{v}_{n}\right\}$ spans ran \underline{A}. In fact, this is a basis for ran \underline{A} :

$$
\overrightarrow{0}=\sum_{p+1}^{n} \lambda^{j} \underline{A} \vec{v}_{j}=\underline{A}\left(\sum \lambda^{j} \vec{v}_{j}\right) \Rightarrow \sum \lambda^{j} \vec{v}_{j} \in \operatorname{ker} \underline{A} \Rightarrow \lambda^{j}=0
$$

(since $\vec{v}_{j}($ for $j>p)$ is independent of $\left.\operatorname{ker} \underline{A}\right)$. Therefore, $\operatorname{dim} \operatorname{ran} \underline{A}=n-p=\operatorname{dim} \operatorname{dom}$ - dim ker. QED.

If $\operatorname{dim} \mathcal{V}=\infty$, we need only to show that $\operatorname{dim} \operatorname{ker}<\infty \Rightarrow \operatorname{dim} \operatorname{ran}=\infty$. Assume to the contrary that $\left\{\vec{w}_{1}, \ldots, \vec{w}_{p}\right\}$ is a basis for $\operatorname{ker} \underline{A}$ and $\left\{\underline{A} \vec{v}_{p+1}, \ldots, \underline{A} \vec{v}_{q}\right\}$ is a basis for $\operatorname{ran} \underline{A}$. Let \vec{v}_{q+1} be a vector independent of $\left\{\vec{w}_{1}, \ldots, \vec{v}_{q}\right\}$. Then $\underline{A} \vec{v}_{q+1}=\sum_{p+1}^{q} \lambda^{j}\left(\underline{A} \vec{v}_{j}\right) \Rightarrow$ $\vec{v}_{q+1}-\sum \lambda^{j} \vec{v}_{j} \in \operatorname{ker} \underline{A}$, contradicting linear independence of $\left\{\vec{w}_{1}, \ldots, \ldots, \vec{v}_{q+1}\right\}$.

Finally, the converse - that infinite-dimensional range implies infinite-dimensional domain - is left as an exercise.

Corollary 15.7. $\operatorname{dim} \operatorname{ran} \underline{A} \leq \min (\operatorname{dim} \mathcal{V}, \operatorname{dim} \mathcal{U})$.

Definition: dim $\operatorname{ran} \underline{A}$ is called the rank of \underline{A}.

Remark: $\operatorname{rank} \underline{A}=$ dimension of the subspace of \mathbf{R}^{n} spanned by the columns of the matrix A. By a later theorem, the column rank equals the row rank of the matrix.

Corollary 15.10. If $\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathcal{U}<\infty$, then \underline{A} is injective if and only if it is surjective.

Cf. the theorem that a set of $\operatorname{dim} \mathcal{V}$ vectors is linearly independent iff it spans.

Proof: injective $\Longleftrightarrow \operatorname{dim}$ ker $=0 \Longleftrightarrow \operatorname{dim} \operatorname{ran}=\operatorname{dim} \mathcal{V} \Longleftrightarrow$ surjective (since ran $\underline{A} \subseteq \mathcal{U})$.

Counterexample to Cor. 15.10 if $\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathcal{U}=\infty: \mathcal{V}=\mathcal{U}=$ space of sequences $\left(u^{1}, u^{2}, \ldots\right) ; \mathcal{U}^{1}=$ space of sequences with $u^{1}=0 ; \underline{A}=$ right shift operator:

$$
\underline{A}\left(u^{1}, u^{2}, \ldots\right)=\left(0, u^{1}, u^{2}, \ldots\right) .
$$

Then $\operatorname{ran} \underline{A}=\mathcal{U}_{1}$, and \underline{A} is injective. It is obviously not surjective, despite the fact that its range has the same dimension as \mathcal{V} (even after the distinctions among transfinite cardinal numbers are taken into account).

Rank: A CLOSER LOOK

$\operatorname{dim} \operatorname{ran} \underline{A}+\operatorname{dim} \operatorname{ker} \underline{A}=\operatorname{dim} \operatorname{dom} \underline{A}=n($ fixed $)$.
Therefore, kernel increases \Rightarrow range decreases. The rank of \underline{A} is thus a doubly important characteristic of \underline{A}.

Note: $\operatorname{rank} \underline{A}=\operatorname{dim} \operatorname{ran} \underline{A}=\operatorname{codim} \operatorname{ker} \underline{A}$. If $m=n$, then $\operatorname{dim} \operatorname{ker} \underline{A}=\operatorname{codim} \operatorname{ran} \underline{A}$.
Let's look at this more concretely. Let $m=n=3$. We find the kernel by reducing matrix A to row echelon form, $A_{\text {red }}$.

Case I: $A_{\mathrm{red}}=\left(\begin{array}{ccc}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right) \quad(A$ nonsingular $)$.
$\underline{A} \vec{v}=\overrightarrow{0}$ has unique solution $\vec{v}=\overrightarrow{0}$. Thus dim ker $=0 . \underline{A} \vec{v}=\vec{b}$ translates into an augmented $\operatorname{matrix}\left(\begin{array}{cccc}1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & *\end{array}\right)$, hence uniquely solvable equations for v^{3}, v^{2}, v^{1}. Thus $\operatorname{dim} \operatorname{ran}$ $=3$, consistent with dim ker $=0$.

Case II: $A_{\text {red }}=\left(\begin{array}{ccc}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 0\end{array}\right)$. Thus dim ker $=1\left(v^{3}\right.$ arbitrary $)$.
$\left(\begin{array}{llll}1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & \xi\end{array}\right) \Rightarrow \underline{A} \vec{v}=\vec{b}$ solvable iff $\xi=0$. Thus ran \underline{A} has codim 1; dim ran $=2$.

What are the other cases?
III. $\left(\begin{array}{ccc}1 & * & * \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \quad$ IV. $\left(\begin{array}{ccc}0 & 1 & * \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
(II-IV are rank 2.)
V. $\left(\begin{array}{lll}1 & * & * \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
VI. $\left(\begin{array}{lll}0 & 1 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
VII. $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
(V-VII are rank 1.)
VIII. $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

VIII is rank 0 . (It was the $\underline{0}$ matrix all along.)

General observation:

$$
A_{\mathrm{red}}=\left(\begin{array}{cccccccc}
0 & 1 & * & * & * & * & * & * \\
0 & 0 & 0 & 1 & * & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

1) Row rank of $A=$ number of nonzero rows of $A_{\text {red }}$.
2) dim ker $\underline{A}=n$ - number of nontrivial homogeneous equations

$$
=n-\text { row rank. }
$$

But Theorem 15.8 says $\quad \operatorname{dim}$ ker $=n-\overbrace{\text { column rank }}^{\operatorname{dim} \text { ran }}$.
Therefore, row rank $=$ column rank.
(This argument can be made into a complete proof, but we'll find a slicker proof later Sec. 18.)
3) To see directly what dim ran is, consider solving the inhomogeneous equation, $\underline{A} \vec{v}=\vec{b}$, by the augmented matrix, encountering $\left(A_{\text {red }} \mid \vec{\xi}\right)$. Each zero row of $A_{\text {red }}$ gives a constraint on $\vec{\xi}$, hence on \vec{b}. Each remaining row gives a solvable equation. Thus dim ran $=$ number of nontrivial rows $=$ row rank.

What happens for an $m \times n$ matrix with $m \neq n$ (i.e., number of equations \neq number of unknowns)? As a crude rule of thumb, we expect

$$
\begin{aligned}
& m>n \Rightarrow \text { no solution. } \\
& m<n \Rightarrow \text { solution not unique. }
\end{aligned}
$$

But we know there are exceptions. Let's see why:
(1) $m>n \Rightarrow A_{\text {red }}$ has zero-rows: $\left(\begin{array}{cc:c}1 & 0 & \xi^{1} \\ 0 & 1 & \xi^{2} \\ 0 & 0 & \xi^{3} \\ 0 & 0 & \xi^{4}\end{array}\right)$ If the ξ^{\prime} s next to the zeros are nonzero (the generic case), there is no solution - in accord with the rule of thumb. If all of those ξ 's are 0 , then some of the original equations were redundant. Therefore, the system was "really" $m^{\prime} \times n$, where $m^{\prime} \leq n$. We know from the case $m^{\prime}=n$ that now there can be one solution, or many, or none.
(2) $m<n$: The typical case is nonuniqueness: $\left(\begin{array}{lll|l}1 & 0 & * & \xi^{1} \\ 0 & 1 & * & \xi^{2}\end{array}\right)$. (Here v^{3} is arbitrary.) Thus dim ker >0, $\operatorname{dim} \operatorname{ran} \leq m<n$. But there may be no solution: $\left(\begin{array}{ccc|c}1 & * & * & \xi^{1} \\ 0 & 0 & 0 & \xi^{2}\end{array}\right)$. Here $\operatorname{dim} \operatorname{ran}<m, \operatorname{dim}$ ker >1. Is it ever possible to have a unique solution? [Hint: Consider the homogeneous case. Recall a homework exercise.]

Linear transformations as vectors

$$
\mathcal{L}(\mathcal{V} ; \mathcal{U}) \equiv \text { set of linear maps } \underline{A}: \mathcal{V} \rightarrow \mathcal{U}
$$

Sums and scalar multiples of such are defined in the usual way for functions. This makes $\mathcal{L}(\mathcal{V} ; \mathcal{U})$ a vector space.

Theorem 16.1. $\operatorname{dim} \mathcal{L}(\mathcal{V} ; \mathcal{U})=m n(=\infty$ if m or $n=\infty)$.

Proof: The infinite-dimensional case is left as an exercise. In the finite-dimensional case, we have seen that \mathcal{L} is isomorphic to the $m \times n$ matrices. A basis for the latter space is obviously $\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ etc., which has $m n$ elements. (The proof on pp. 84-85 of Bowen \& Wang is the same - it just looks different.)

We turn next to a precise definition of "isomorphic", which we have been using (as here) informally.

