Kernel and range

Definition: The kernel (or null-space) of \underline{A} is

 $\ker \underline{A} \equiv \{ \vec{v} \in \mathcal{V} : \underline{A}\vec{v} = \vec{0} \ (\in \mathcal{U}) \}.$

THEOREM 15.3. ker <u>A</u> is a subspace of \mathcal{V} . (In particular, it always contains $\vec{0}_{\mathcal{V}}$.)

Definition: <u>A</u> is one-to-one (or injective, or regular) if

$$\underline{A}\vec{v}_1 = \underline{A}\vec{v}_2 \implies \vec{v}_1 = \vec{v}_2$$

It suffices to check the case $\underline{A}\vec{v}_1 = \vec{0}$:

Theorem 15.4. A linear operator <u>A</u> is injective iff ker $\underline{A} = \{\vec{0}\}$.

Proof:

 \Rightarrow : trivial (special case).

 $\Leftarrow: \underline{A}\vec{v}_1 = \underline{A}\vec{v}_2 \Rightarrow \underline{A}(\vec{v}_1 - \vec{v}_2) = \vec{0} \Rightarrow \vec{v}_1 - \vec{v}_2 \in \ker \underline{A} \Rightarrow \vec{v}_1 = \vec{v}_2.$

[Pulling everything back to $\vec{0}$ is a standard trick in dealing with linear operators; recall solution of inhomogeneous ODE via solution of homogeneous ODE.]

Definition: A homogeneous linear equation is an equation of the form $\underline{A}\vec{v} = \vec{0}$ (<u>A</u> linear).

Thus its solutions are precisely the elements of the kernel of \underline{A} .

Definition: An inhomogeneous linear equation is one of the form $\underline{A}\vec{v} = \vec{b}$ $(\vec{b} \in \mathcal{U} \text{ given})$.

Thus we can reformulate and sharpen Theorem 15.4: If the corresponding homogeneous equation has nontrivial $(\neq \vec{0})$ solutions, then the solution of an inhomogeneous equation is nonunique (if it exists), and conversely.

The existence question is related to another concept:

Definition: The range of \underline{A} is

ran
$$\underline{A} \equiv \{ \vec{u} \in \mathcal{U} : \exists \vec{v} \in \mathcal{V} \text{ such that } \underline{A}\vec{v} = \vec{u} \}.$$

THEOREM 15.6. ran \underline{A} is a subspace of \mathcal{U} .

Thus the range of \underline{A} is precisely those elements \vec{b} of \mathcal{U} for which the inhomogeneous equation $\underline{A}\vec{v} = \vec{b}$ has solutions.

Definition: <u>A</u> is onto \mathcal{U} (or surjective) if ran <u>A</u> = \mathcal{U} .

Theorem 15.8. dim dom $\underline{A} = \dim \ker \underline{A} + \dim \operatorname{ran} \underline{A}$.

PROOF: For the moment assume that $\mathcal{V} \equiv \text{dom } \underline{A}$ is finite-dimensional. Pick a basis for ker \underline{A} and extend it to a basis for \mathcal{V} :

$$\{\vec{w}_1, \dots, \vec{w}_p, \vec{v}_{p+1}, \dots, \vec{v}_n\}$$
 $(p \equiv \dim \ker \underline{A}).$

Consider the images,

$$\{\underbrace{\underline{A}\vec{w_1},\ldots,\underline{A}\vec{w_p}}_{\text{all}=\vec{0}},\underline{A}\vec{v_{p+1}},\ldots,\underline{A}\vec{v_n}\}.$$

They span ran \underline{A} ; hence $\{\underline{A}\vec{v}_{p+1},\ldots,\underline{A}\vec{v}_n\}$ spans ran \underline{A} . In fact, this is a basis for ran \underline{A} :

$$\vec{0} = \sum_{p+1}^{n} \lambda^{j} \underline{A} \vec{v}_{j} = \underline{A} \left(\sum \lambda^{j} \vec{v}_{j} \right) \Rightarrow \sum \lambda^{j} \vec{v}_{j} \in \ker \underline{A} \Rightarrow \lambda^{j} = 0$$

(since \vec{v}_j (for j > p) is independent of ker <u>A</u>). Therefore, dim ran <u>A</u> = n - p = dim dom – dim ker. QED.

If dim $\mathcal{V} = \infty$, we need only to show that dim ker $\langle \infty \rangle \Rightarrow$ dim ran $= \infty$. Assume to the contrary that $\{\vec{w}_1, \ldots, \vec{w}_p\}$ is a basis for ker \underline{A} and $\{\underline{A}\vec{v}_{p+1}, \ldots, \underline{A}\vec{v}_q\}$ is a basis for ran \underline{A} . Let \vec{v}_{q+1} be a vector independent of $\{\vec{w}_1, \ldots, \vec{v}_q\}$. Then $\underline{A}\vec{v}_{q+1} = \sum_{p=1}^q \lambda^j(\underline{A}\vec{v}_j) \Rightarrow$ $\vec{v}_{q+1} - \sum \lambda^j \vec{v}_j \in \ker \underline{A}$, contradicting linear independence of $\{\vec{w}_1, \ldots, \vec{v}_{q+1}\}$.

Finally, the converse — that infinite-dimensional range implies infinite-dimensional domain — is left as an exercise.

COROLLARY 15.7. dim ran $\underline{A} \leq \min(\dim \mathcal{V}, \dim \mathcal{U}).$

DEFINITION: dim ran \underline{A} is called the rank of \underline{A} .

REMARK: rank \underline{A} = dimension of the subspace of \mathbf{R}^n spanned by the columns of the matrix A. By a later theorem, the column rank equals the row rank of the matrix.

Corollary 15.10. If dim $\mathcal{V} = \dim \mathcal{U} < \infty$, then <u>A</u> is injective if and only if it is surjective.

Cf. the theorem that a set of dim \mathcal{V} vectors is linearly independent iff it spans.

PROOF: injective \iff dim ker = 0 \iff dim ran = dim \mathcal{V} \iff surjective (since ran $\underline{A} \subseteq \mathcal{U}$).

COUNTEREXAMPLE to Cor. 15.10 if dim $\mathcal{V} = \dim \mathcal{U} = \infty$: $\mathcal{V} = \mathcal{U} =$ space of sequences (u^1, u^2, \ldots) ; $\mathcal{U}^1 =$ space of sequences with $u^1 = 0$; $\underline{A} =$ right shift operator:

A
$$(u^1, u^2, \dots) = (0, u^1, u^2, \dots).$$

Then ran $\underline{A} = \mathcal{U}_1$, and \underline{A} is injective. It is obviously not surjective, despite the fact that its range has the same dimension as \mathcal{V} (even after the distinctions among transfinite cardinal numbers are taken into account).

RANK: A CLOSER LOOK

dim ran \underline{A} + dim ker \underline{A} = dim dom \underline{A} = n (fixed).

Therefore, kernel increases \Rightarrow range decreases. The rank of <u>A</u> is thus a doubly important characteristic of <u>A</u>.

Note: rank $\underline{A} = \dim \operatorname{ran} \underline{A} = \operatorname{codim} \ker \underline{A}$. If m = n, then $\dim \ker \underline{A} = \operatorname{codim} \operatorname{ran} \underline{A}$.

Let's look at this more concretely. Let m = n = 3. We find the kernel by reducing matrix A to row echelon form, A_{red} .

Case I:
$$A_{\rm red} = \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$
 (A nonsingular).

 $\underline{A}\vec{v} = \vec{0}$ has unique solution $\vec{v} = \vec{0}$. Thus dim ker = 0. $\underline{A}\vec{v} = \vec{b}$ translates into an augmented matrix $\begin{pmatrix} 1 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \end{pmatrix}$, hence uniquely solvable equations for v^3 , v^2 , v^1 . Thus dim ran = 3, consistent with dim ker = 0.

Case II:
$$A_{\text{red}} = \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 0 \end{pmatrix}$$
. Thus dim ker = 1 (v^3 arbitrary).
$$\begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & \xi \end{pmatrix} \Rightarrow \underline{A}\vec{v} = \vec{b} \text{ solvable iff } \xi = 0.$$
 Thus ran \underline{A} has codim 1; dim ran = 2.

What are the other cases?

III.
$$\begin{pmatrix} 1 & * & * \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 IV. $\begin{pmatrix} 0 & 1 & * \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

(II–IV are rank 2.)

$$V. \begin{pmatrix} 1 & * & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad VI. \begin{pmatrix} 0 & 1 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad VII. \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(V–VII are rank 1.)

VIII.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

VIII is rank 0. (It was the $\underline{0}$ matrix all along.)

General observation:

$$A_{\rm red} = \begin{pmatrix} 0 & 1 & * & * & * & * & * & * \\ 0 & 0 & 0 & 1 & * & * & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- 1) Row rank of A = number of nonzero rows of A_{red} .
- 2) dim ker $\underline{A} = n$ number of nontrivial homogeneous equations

= n - row rank.

But Theorem 15.8 says dim ker = n - column rank.

Therefore, row rank = column rank.

(This argument can be made into a complete proof, but we'll find a slicker proof later — Sec. 18.)

3) To see directly what dim ran is, consider solving the inhomogeneous equation, $\underline{A}\vec{v} = \vec{b}$, by the augmented matrix, encountering $(A_{\text{red}} \mid \vec{\xi})$. Each zero row of A_{red} gives a constraint on $\vec{\xi}$, hence on \vec{b} . Each remaining row gives a solvable equation. Thus dim ran = number of nontrivial rows = row rank.

What happens for an $m \times n$ matrix with $m \neq n$ (i.e., number of equations \neq number of unknowns)? As a crude rule of thumb, we expect

 $m > n \Rightarrow$ no solution.

 $m < n \Rightarrow$ solution not unique.

But we know there are exceptions. Let's see why:

(1)
$$m > n \Rightarrow A_{\text{red}}$$
 has zero-rows: $\begin{pmatrix} 1 & 0 & | & \xi^1 \\ 0 & 1 & | & \xi^2 \\ 0 & 0 & | & \xi^3 \\ 0 & 0 & | & \xi^4 \end{pmatrix}$ If the ξ 's next to the zeros are nonzero

(the generic case), there is no solution — in accord with the rule of thumb. If all of those ξ 's are 0, then some of the original equations were *redundant*. Therefore, the system was "really" $m' \times n$, where $m' \leq n$. We know from the case m' = n that now there can be one solution, or many, or none.

(2) m < n: The typical case is nonuniqueness: $\begin{pmatrix} 1 & 0 & * & | & \xi^1 \\ 0 & 1 & * & | & \xi^2 \end{pmatrix}$. (Here v^3 is arbitrary.) Thus dim ker > 0, dim ran $\leq m < n$. But there may be no solution: $\begin{pmatrix} 1 & * & * & | & \xi^1 \\ 0 & 0 & 0 & | & \xi^2 \end{pmatrix}$. Here dim ran < m, dim ker > 1. Is it ever possible to have a unique solution? [Hint: Consider the homogeneous case. Recall a homework exercise.]

Linear transformations as vectors

 $\mathcal{L}(\mathcal{V};\mathcal{U}) \equiv \text{set of linear maps } \underline{A}: \mathcal{V} \to \mathcal{U}.$

Sums and scalar multiples of such are defined in the usual way for functions. This makes $\mathcal{L}(\mathcal{V};\mathcal{U})$ a vector space.

THEOREM 16.1. dim $\mathcal{L}(\mathcal{V};\mathcal{U}) = mn \ (=\infty \text{ if } m \text{ or } n = \infty).$

PROOF: The infinite-dimensional case is left as an exercise. In the finite-dimensional case, we have seen that \mathcal{L} is isomorphic to the $m \times n$ matrices. A basis for the latter space is obviously $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ etc., which has mn elements. (The proof on pp. 84–85 of Bowen & Wang is the same — it just looks different.)

We turn next to a precise definition of "isomorphic", which we have been using (as here) informally.