
Linear operators
(a.k.a. linear transformations, linear maps, . . . )

Basics (Secs. 15–16, parts of 22–23)

Definition: If V and U are vector spaces (same F), a function A : V → U is linear if

∀~v1, ~v2 ∈ V, ∀λ ∈ F : A(λ~v1 + ~v2) = λA(~v1) +A(~v2).

Definition:

V = domain of A = dom A.

U = codomain of A.

Remarks:

(1) Exactly as for “subspace”, there are various equivalent definitions of “linear”; e.g.,

A

( N∑
j=1

λj~vj

)
=

N∑
j=1

λjA(~vj).

(2) It’s traditional to omit parentheses: A~v ≡ A(~v).

(3) Special case: U = F . Then A is called a linear functional. [Postponed to Chap. 7.]

Infinite-dimensional examples
[Cf. Milne pp. 37–40]

1. V = polynomials = U . A =
d

dt
.

2. V = (space of integrable functions on [0, 1]) ≡ L1(0, 1).

Af ≡
∫ 1

0
f(x) dx defines a linear functional on V. (So does

∫ 1

0
f(x)w(x) dx for suitable

fixed w.)

3. V = (space of continuous functions on R) ≡ C0(−∞,∞). Af ≡ f(0).
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4. Old example: A = +
d2

dt2
+ ω2.

A suitable domain is V = C2(0, 1); then U = C0(0, 1) (or larger).

C2(0, 1) ≡ { f : f, f ′, f ′′ all continuous on (0, 1)}.

We may wish to restrict the domain by imposing boundary conditions, such as

f(0) = 0 = f(1). (C1)

(For now we consider only homogeneous BC; hence we get a subspace V1 of C2(0, 1).)
Motivations:

(A) BC may make solution of Af = g unique (for g ∈ U). See first exercise on next
assignment. This part of the ODE problem is pure linear algebra (unlike the
second exercise).

(B) If f1 and f2 ∈ V1, then

f1 · (Af2) = (Af1) · f2 — i.e.,∫ 1

0

f1(t) [f ′′2 (t) + ω2f2(t)] dt =

∫ 1

0

[f ′′1 (t) + ω2f1(t)] f2(t) dt.

[Proof: Integrate by parts. All endpoint terms vanish because of (C1).] This
property is closely related to the facts which you will verify by brute force in the
second exercise of the assignment. Its significance will become clearer later.

Remark: Different BC — e.g.,

f ′(0) = 0 = f ′(1) (C2)

define a different domain, hence a different operator. (Its eigenfunctions are cosines instead
of sines.)

Matrix formulation

Let V and U be finite-dimensional. Choose bases:

{~vk}nk=1 ⊂ V, {~uj}mj=1 ⊂ U .

Now A~vk ∈ span {~uj}, so A~vk =
∑m

j=1A
j
k~uj for some numbers Aj

k. For ~v =
∑n

k=1 λ
k~vk ∈

V, calculate A~v by linearity:

A

(∑
k

λk~vk

)
=
∑
k

λkA~vk =
∑
k

λk
∑
j

Aj
k~uj

=
m∑
j=1

( n∑
k=1

Aj
kλ

k

)
~uj .
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Thus

λk 7→
n∑

k=1

Aj
kλ

k ≡ Aj
kλ

k (†)

is the coordinate expression of the mapping A : V → U . (†) is a linear map of Rn → Rm.
In matrix notation, it is λ 7→ Aλ. Here I abuse notation by equating A with its matrix;
one must keep in mind that the matrix depends on the bases chosen. (I shall try to use an
underline for operators and no underline for matrices.)

The correspondence between operators and matrices is one-to-one and onto (see an
exercise of the current assignment).

Corollary 1. The linear maps from Rn to Rm (or Cn to Cm) are precisely the functions
given by homogeneous first-degree formulas:

yj =

n∑
k=1

ajkx
k (j = 1, . . . ,m).

Proof: Choose the natural bases [e.g., (~ej)
i = δij ]. Then each vector ~v is its coordinate

representation, the column vector λ. We have a special case of the situation just discussed
at length.

Corollary 2. The matrix of a composite linear operator

A ◦B (B : V1 → V2, A : V2 → V3)

is the product, AB, of the corresponding matrices.

Proof: Substitute (†)B into (†)A and interchange sums.

Corollary 3. The kth column of the matrix A is the coordinate representation of A~vk
(where ~vk is the kth element of the basis used for V).

Comments on notation: There are two conventions, each with its advantages. (Here I
introduce, in both cases, the famous or notorious summation convention, that the

∑
may

be omitted when an index is repeated, since this almost always is associated with a sum
over the natural range of the index.)

1. All indices “down”. The fundamental convention is row before column. (An m×n
matrix has m rows and n columns, and the row index comes first on the symbol Ajk .)
In normal matrix multiplication, adjacent indices are summed:

(AB)jl = AjkBkl ; (Aλ)j = Ajkλk .
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2. Basis index down, coordinate index up: ~v = λk~vk . Therefore the matrix is Aj
k . Sum

over any repeated up-down pair :

(AB)j l = Aj
kB

k
l ; (Aλ)j = Aj

kλ
k.

Unfortunately, the order of indices tends to get lost in typesetting.

Simmonds provides the mnemonic

Row = Roof, Column = Cellar.

Inner product case: If U is an inner product space and {ûj} is an ON basis, then (in
the real case)

Aj
k = ûj · (A~vk) ≡ 〈j|A|k〉 or 〈ûj , A~vk〉.

In the complex case, in the “mathematicians’ notation” Aj
k equals (A~vk) · ûj .

Remark: All of this algebraic formalism also applies to infinite-dimensional Hilbert space.
It should be noted, however, that in ∞-dim. vector spaces, matrices tend to lose their
usefulness, for two reasons:

1. Explicit calculations become difficult; abstract methods gain a comparative advantage.

2. Linear operators must satisfy special conditions to make formal manipulations valid
for infinite sums:

(a) A(λj~vj) = λj(A~vj)? Only if A is continuous (alias bounded).

(b) Even if A and B are bounded, the interchange needed to prove Corollary 2 might
be invalid; Aj

kB
k
l might not converge. Even if true, this may be hard to prove.
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