
Math. 640 30 September 1994

Test A – Solutions

1. (30 pts.) Let A
¯
:R3 → R

3 be the linear function with matrix





0 2 2
1 0 1
4 2 6



. Find bases for

(a) ker A
¯

The kernel is the solution space of the homogeneous equation A
¯
~x = 0. So, row-reduce the matrix to

(

1 0 1

0 1 1

0 0 0

)

getting the equivalent homogeneous equations

a+ c = 0,

b+ c = 0.

Choosing c arbitrarily, one can solve uniquely for a and b. The simplest choice is c = −1, yielding
the single basis vector

(

1

1

−1

)

.

(b) ran A
¯

The range is the span of the columns, so we rewrite the columns as rows and row-reduce:
(

0 1 4

2 0 2

2 1 6

)

−→

(

1 0 1

0 1 4

0 0 0

)

.

Thus a basis is
{(

1

0

1

)

,

(

0

1

4

)}

.

(This is not the only correct answer, of course.)

(c) ker A
¯
*

Method 1: Transpose the matrix and proceed as in (a). The row reduction is identical to that in (b),
and you get the single basis vector

(

1

4

−1

)

.

Method 2: The kernel of A
¯
* is the orthogonal complement of the range of A

¯
, so we should be able

to get the answer from the solution to (b).

Method 2a: Take the vector cross product of the two vectors found in (b). (This works only in
dimension 3!)

Method 2b: The condition that a vector is orthogonal to both basis vectors in (b) is

a+ c = 0,

b+ 4c = 0.

But this is the same system you have to solve in Method 1.
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2. (15 pts.) Let V and U be subspaces of a vector space X .

(a) Explain what is meant by V + U .

V + U = {~v + ~u:~v ∈ V, ~u ∈ U}.

(b) State and prove the formula for the dimension of V + U .

dim(V + U) = dimV + dimU − dim(V ∩ U).

Proof: Let {~w1, . . . , ~wr} be a basis for V ∩ U . Extend this set to a basis for V (thereby adding
dimV − r vectors that are in V but not in U), and similarly extend it to a basis for U . Then combine
these two sets to form a set B. It is clear that the number of vectors in B is the number on the right
side of the equation to be proved. The proof will be complete once we verify that B is a basis for
V+U . Well, every vector in V+U is a sum of two vectors, each of which can be expanded in terms of
one of the two bases we constructed at the intermediate stage, so B spans. To show that it is linearly
independent, suppose that some linear combination of its elements adds to zero. Then we have three
vectors

~w + ~v + ~u = 0

where ~w ∈ V ∩ U , ~v /∈ U (if ~v 6= 0), and ~u /∈ V (if ~u 6= 0). Since ~v ∈ V, we have ~w + ~v ∈ V equal to
−~u /∈ V, which is a contradiction unless all the vectors are zero.

3. (28 pts.) Let P3 be the space of cubic polynomials, and consider the differential operator

L =
d2

dt2
+ t

d

dt

regarded as a linear function from P3 to P3 . (Thus Lp(t) ≡ p′′(t) + tp′(t).)

(a) Find the matrix representing L with respect to the usual basis of P3 (the power func-
tions {t3, t2, t, 1}).

L(t3) = 3t3 + 6t,

L(t2) = 2t2 + 2,

L(t) = t,

L(1) = 0.

So by the “kth column rule” the matrix is







3 0 0 0

0 2 0 0

6 0 1 0

0 2 0 0






.
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(b) What is the kernel of L?

The matrix quickly row-reduces to






1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0






.

This betokens that if L(at3 + bt2 + ct+ d) = 0, then a = b = c = 0 but d is arbitrary. So the kernel
consists of the constant functions.

(c) Rephrase question (b) so that a Math. 308* student would understand it.

“Find all cubic polynomials that solve the differential equation y′′+ ty′ = 0.” (Incidentally, the other

(linearly independent) solution is
∫

e−t2/2 dt.)

(d) What is the dimension of the range of L?

Dimension of domain − dimension of kernel = 4 − 1 = 3. Indeed, we can see directly that the three
nonzero columns of the matrix are independent.

4. (15 pts.) Let S be an arbitrary subset of an inner product space V.

(a) Prove that S ⊆ S⊥⊥.

If ~v ∈ S, then by definition of S⊥, we have ~v · ~u = 0 for all ~u ∈ S⊥. But then by definition of S⊥⊥

(and the essential symmetry of the inner product), ~v ∈ S⊥⊥.

(b) What additional information is needed, under various circumstances, to ensure that

S = S⊥⊥ ?

First, it is necessary that S be a subspace, not just an arbitrary subset. If S is infinite-dimensional,
S also needs to be (topologically) closed. (A finite-dimensional subspace is automatically closed, so
this is not a separate condition in that case.)

5. (12 pts.) If A
¯

is a nonsingular linear transformation, are these statements true or false?
Explain.

(a) A
¯
−1 is a linear transformation.

TRUE: This is implicit in all our calculations of matrix inverses. For a formal proof, observe

A
¯
−1(r~x+ ~y) = A

¯
−1(rA

¯
~u+ A

¯
~v) for some ~u and ~v

= A
¯
−1A

¯
(r~u+ ~v)

= r~u+ ~v ≡ rA
¯
−1~x+A

¯
−1~y.

(b) The mapping A
¯
→ A

¯
−1 is a linear transformation.

FALSE: (A
¯
+B

¯
)−1 6= A

¯
−1 + B

¯
−1; (rA

¯
)−1 = 1

r A
¯
−1 6= rA

¯
−1.

* introductory differential equations, with no linear algebra prerequisite


