Test A - Solutions

1. (30 pts.) Let $\underline{A}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear function with matrix $\left(\begin{array}{lll}0 & 2 & 2 \\ 1 & 0 & 1 \\ 4 & 2 & 6\end{array}\right)$. Find bases for (a) $\operatorname{ker} \underline{A}$

The kernel is the solution space of the homogeneous equation $\underline{A} \vec{x}=0$. So, row-reduce the matrix to

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

getting the equivalent homogeneous equations

$$
\begin{aligned}
a+\quad c & =0, \\
b+c & =0 .
\end{aligned}
$$

Choosing c arbitrarily, one can solve uniquely for a and b. The simplest choice is $c=-1$, yielding the single basis vector

$$
\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

(b) $\operatorname{ran} \underline{A}$

The range is the span of the columns, so we rewrite the columns as rows and row-reduce:

$$
\left(\begin{array}{lll}
0 & 1 & 4 \\
2 & 0 & 2 \\
2 & 1 & 6
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right) .
$$

Thus a basis is

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)\right\} .
$$

(This is not the only correct answer, of course.)
(c) $\operatorname{ker} \underline{A}^{*}$

Method 1: Transpose the matrix and proceed as in (a). The row reduction is identical to that in (b), and you get the single basis vector

$$
\left(\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right)
$$

Method 2: The kernel of \underline{A}^{*} is the orthogonal complement of the range of \underline{A}, so we should be able to get the answer from the solution to (b).

Method 2a: Take the vector cross product of the two vectors found in (b). (This works only in dimension 3!)

Method 2b: The condition that a vector is orthogonal to both basis vectors in (b) is

$$
\begin{aligned}
a+\quad c & =0, \\
b+4 c & =0 .
\end{aligned}
$$

But this is the same system you have to solve in Method 1.
2. (15 pts.) Let \mathcal{V} and \mathcal{U} be subspaces of a vector space \mathcal{X}.
(a) Explain what is meant by $\mathcal{V}+\mathcal{U}$.

$$
\mathcal{V}+\mathcal{U}=\{\vec{v}+\vec{u}: \vec{v} \in \mathcal{V}, \vec{u} \in \mathcal{U}\} .
$$

(b) State and prove the formula for the dimension of $\mathcal{V}+\mathcal{U}$.

$$
\operatorname{dim}(\mathcal{V}+\mathcal{U})=\operatorname{dim} \mathcal{V}+\operatorname{dim} \mathcal{U}-\operatorname{dim}(\mathcal{V} \cap \mathcal{U}) .
$$

Proof: Let $\left\{\vec{w}_{1}, \ldots, \vec{w}_{r}\right\}$ be a basis for $\mathcal{V} \cap \mathcal{U}$. Extend this set to a basis for \mathcal{V} (thereby adding $\operatorname{dim} \mathcal{V}-r$ vectors that are in \mathcal{V} but not in \mathcal{U}), and similarly extend it to a basis for \mathcal{U}. Then combine these two sets to form a set \mathcal{B}. It is clear that the number of vectors in \mathcal{B} is the number on the right side of the equation to be proved. The proof will be complete once we verify that \mathcal{B} is a basis for $\mathcal{V}+\mathcal{U}$. Well, every vector in $\mathcal{V}+\mathcal{U}$ is a sum of two vectors, each of which can be expanded in terms of one of the two bases we constructed at the intermediate stage, so \mathcal{B} spans. To show that it is linearly independent, suppose that some linear combination of its elements adds to zero. Then we have three vectors

$$
\vec{w}+\vec{v}+\vec{u}=0
$$

where $\vec{w} \in \mathcal{V} \cap \mathcal{U}, \vec{v} \notin \mathcal{U}$ (if $\vec{v} \neq 0$), and $\vec{u} \notin \mathcal{V}$ (if $\vec{u} \neq 0$). Since $\vec{v} \in \mathcal{V}$, we have $\vec{w}+\vec{v} \in \mathcal{V}$ equal to $-\vec{u} \notin \mathcal{V}$, which is a contradiction unless all the vectors are zero.
3. (28 pts.) Let \mathcal{P}_{3} be the space of cubic polynomials, and consider the differential operator

$$
L=\frac{d^{2}}{d t^{2}}+t \frac{d}{d t}
$$

regarded as a linear function from \mathcal{P}_{3} to \mathcal{P}_{3}. (Thus $L p(t) \equiv p^{\prime \prime}(t)+t p^{\prime}(t)$.)
(a) Find the matrix representing L with respect to the usual basis of \mathcal{P}_{3} (the power functions $\left.\left\{t^{3}, t^{2}, t, 1\right\}\right)$.

$$
\begin{aligned}
L\left(t^{3}\right) & =3 t^{3}+6 t, \\
L\left(t^{2}\right) & =2 t^{2}+2, \\
L(t) & =t, \\
L(1) & =0 .
\end{aligned}
$$

So by the " k th column rule" the matrix is

$$
\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
6 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right) .
$$

(b) What is the kernel of L ?

The matrix quickly row-reduces to

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

This betokens that if $L\left(a t^{3}+b t^{2}+c t+d\right)=0$, then $a=b=c=0$ but d is arbitrary. So the kernel consists of the constant functions.
(c) Rephrase question (b) so that a Math. 308* student would understand it.
"Find all cubic polynomials that solve the differential equation $y^{\prime \prime}+t y^{\prime}=0$." (Incidentally, the other (linearly independent) solution is $\int e^{-t^{2} / 2} d t$.)
(d) What is the dimension of the range of L ?

Dimension of domain - dimension of kernel $=4-1=3$. Indeed, we can see directly that the three nonzero columns of the matrix are independent.
4. (15 pts.) Let \mathcal{S} be an arbitrary subset of an inner product space \mathcal{V}.
(a) Prove that $\mathcal{S} \subseteq \mathcal{S}^{\perp \perp}$.

If $\vec{v} \in S$, then by definition of \mathcal{S}^{\perp}, we have $\vec{v} \cdot \vec{u}=0$ for all $\vec{u} \in \mathcal{S}^{\perp}$. But then by definition of $\mathcal{S}^{\perp \perp}$ (and the essential symmetry of the inner product), $\vec{v} \in \mathcal{S}^{\perp \perp}$.
(b) What additional information is needed, under various circumstances, to ensure that $\mathcal{S}=\mathcal{S}^{\perp \perp}$?
First, it is necessary that \mathcal{S} be a subspace, not just an arbitrary subset. If \mathcal{S} is infinite-dimensional, \mathcal{S} also needs to be (topologically) closed. (A finite-dimensional subspace is automatically closed, so this is not a separate condition in that case.)
5. (12 pts.) If A is a nonsingular linear transformation, are these statements true or false? Explain.
(a) \underline{A}^{-1} is a linear transformation.

TRUE: This is implicit in all our calculations of matrix inverses. For a formal proof, observe

$$
\begin{aligned}
\underline{A}^{-1}(r \vec{x}+\vec{y}) & =\underline{A}^{-1}(r \underline{A} \vec{u}+\underline{A} \vec{v}) \quad \text { for some } \vec{u} \text { and } \vec{v} \\
& =\underline{A}^{-1} \underline{A}(r \vec{u}+\vec{v}) \\
& =r \vec{u}+\vec{v} \equiv r \underline{A}^{-1} \vec{x}+\underline{A}^{-1} \vec{y} .
\end{aligned}
$$

(b) The mapping $A \rightarrow \underline{A}^{-1}$ is a linear transformation.

FALSE: $(\underline{A}+\underline{B})^{-1} \neq \underline{A}^{-1}+\underline{B}^{-1} ; \quad(r \underline{A})^{-1}=\frac{1}{r} \underline{A}^{-1} \neq r \underline{A}^{-1}$.

[^0]
[^0]: * introductory differential equations, with no linear algebra prerequisite

