Consequences and applications of the Jordan theorem

Functions of an operator

Suppose that $\underline{A}: \mathcal{V} \rightarrow \mathcal{V}$ is an operator and $f: \mathbf{C} \rightarrow \mathbf{C}$ is an ordinary numerical function. (In fact, the domain of f might be only a subset of \mathbf{C}.) Does

$$
f(\underline{A})
$$

have any meaning? (Of course, we would not raise this question if it did not have a useful, positive answer.)

Let's look at some cases where the answer is already yes:
$\underline{A}^{2} \equiv \underline{A} \circ \underline{A} \Rightarrow$ polynomial functions of \underline{A} are defined.
$\frac{1}{A} \equiv \underline{A}^{-1} \Rightarrow$ rational functions are defined. (The value of the function may not exist for all \underline{A}.) Example:

$$
\frac{\underline{A}-i}{\underline{A}+i} \equiv(\underline{A}+i)^{-1}(\underline{A}-i)=(\underline{A}-i)(\underline{A}+i)^{-1}
$$

(if $(\underline{A}+i)^{-1}$ exists).
REmark: $\frac{\underline{A}-i}{\underline{B}+i}$ is not defined if $[\underline{A}, \underline{B}] \neq \underline{0}$.
Observe:

1) For a diagonal matrix $A=D=\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right)$,

$$
f(D)=\left(\begin{array}{ccc}
f\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & f\left(\lambda_{n}\right)
\end{array}\right)
$$

for rational f.
2) Since $f(\underline{A})$ depends only on the operator \underline{A}, not on the matrix (choice of basis), we must have

$$
f\left(S A S^{-1}\right)=S f(A) S^{-1}
$$

under any similarity transformation. To verify this for polynomials, note that internal S's cancel out: e.g.,

$$
\left(S A S^{-1}\right)^{2}=S A S^{-1} S A S^{-1}=S A A S^{-1}=S A^{2} S^{-1}
$$

This suggests the following Idea: For a general f (say $f(x) \equiv e^{x}$), define $f(D)$ for a diagonal matrix D as

$$
\left(\begin{array}{ccc}
f\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & f\left(\lambda_{n}\right)
\end{array}\right)
$$

Then for a diagonalizable $A, A=S D S^{-1}$, define

$$
f(A) \equiv S f(D) S^{-1}
$$

Thus $f(\underline{A})$ is well-defined.
In other words, for $\underline{A}=\sum_{\nu=1}^{L} \lambda_{\nu} \underline{P}_{\nu}$, define $f(\underline{A}) \equiv \sum_{\nu=1}^{L} f\left(\lambda_{\nu}\right) \underline{P}_{\nu}$.
Let's check this for polynomials:

$$
\underline{A}^{2}=\left(\sum_{\nu} \lambda_{\nu} \underline{P}_{\nu}\right)\left(\sum_{\mu} \lambda_{\mu} \underline{P}_{\mu}\right)=\sum_{\nu} \lambda_{\nu}^{2} \underline{P}_{\nu}
$$

since $\underline{P}_{\nu}^{2}=\underline{P}_{\nu}$ and $\underline{P}_{\nu} \underline{P}_{\mu}=0$ if $\nu \neq \mu$. [What happens if f is the characteristic function of a set?]

Some other definitions of $f(\underline{A})$ are possible (for one who knows enough analysis):
(1) Power series. Examples:

$$
\begin{gathered}
e^{\underline{A}} \equiv \underline{1}+\underline{A}+\frac{1}{2} \underline{A}^{2}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} \underline{A}^{n} ; \\
\ln (\underline{1}-\underline{A}) \equiv-\sum_{n=1}^{\infty} \frac{1}{n} \underline{A}^{n} \quad-\text { or } \quad \ln \underline{A} \equiv-\sum_{n=1}^{\infty} \frac{1}{n}(\underline{1}-\underline{A})^{n} .
\end{gathered}
$$

If the series converges (see homework), this agrees with the diagonalization definition, where it is applicable. [Check this.]
(2) Cauchy's formula. This requires f to be analytic, but there is no restriction on the radius of convergence.

$$
f(\underline{A}) \equiv \frac{1}{2 \pi i} \oint \frac{f(z)}{z-\underline{A}} d z
$$

for any contour surrounding all eigenvalues of \underline{A} in the usual way. This equation means that for all \vec{v},

$$
f(\underline{A}) \vec{v}=\frac{1}{2 \pi i} \oint\left[f(z)(z-\underline{A})^{-1} \vec{v}\right] d z .
$$

As a homework problem, I ask you to check that this definition is consistent with diagonalization.

If \underline{A} is not diagonalizable, let's assume that f is analytic and define $f(\underline{A})$ by power series. (The Cauchy definition could also be used.) For $\vec{v} \in \mathcal{U}\left(\lambda_{\nu}\right)$, we'll expand $f(x)$ about $x=\lambda_{\nu}$:

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(\lambda_{\nu}\right)\left(x-\lambda_{\nu}\right)^{n} .
$$

Then, for x, substitute $\left.\underline{A}\right|_{\mathcal{U}\left(\lambda_{\nu}\right)} \equiv \underline{A}_{\nu}$ to find $f(\underline{A}) \vec{v}$. (Note: $\mathcal{U}\left(\lambda_{\nu}\right)$ is an invariant subspace under \underline{A}, hence under all powers of \underline{A}, hence under all functions of \underline{A}.)

In a Jordan basis, $\underline{A}_{\nu}-\lambda_{\nu}=\left(\begin{array}{ccccc}0 & 1 & & & \\ & 0 & 0 & & \\ & & 0 & 1 & \\ 0 & & & \ddots & \ddots\end{array}\right)$. Let's concentrate on a single Jordan block, say $N=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. We find

$$
N^{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad N^{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=N^{n} \quad \text { for all } n>2 .
$$

In basis-vector terms, this observation is

$$
\begin{gathered}
\underline{N} \vec{v}_{j}=\vec{v}_{j-1} \quad \text { for } j>1, \quad \underline{N} \vec{v}_{1}=\overrightarrow{0} \\
\underline{N}^{2} \vec{v}_{j}=\vec{v}_{j-2} \quad \text { for } j>2, \quad \underline{N}^{2} \vec{v}_{2}=\overrightarrow{0}=\underline{N}^{2} \vec{v}_{1}
\end{gathered}
$$

etc. We see that \underline{N} is nilpotent: $\underline{N}^{p}=\underline{0}$ for $p \geq$ size of the Jordan block. Therefore, $\underline{A}_{\nu}-\lambda_{\nu}$ is nilpotent. It follows that the Taylor series for $f\left(\underline{A}_{\nu}\right)$ is a finite sum!

Now we can write $f(\underline{A})=\sum_{\nu=1}^{L} \hat{f}\left(\underline{A}_{\nu}\right)$ (a direct-sum, or block-diagonal, operator). Let's rewrite this result in terms of projections:

Theorem. Let

$$
\underline{A}=\sum_{\nu=1}^{L}\left(\lambda_{\nu} \underline{P}_{\nu}+\underline{N}_{\nu}\right)
$$

be the Jordan decomposition of \underline{A}. That is, $\underline{P}_{\nu}=$ projection onto $\mathcal{U}\left(\lambda_{\nu}\right)$ along the other $\mathcal{U}(\lambda)$'s, and $\underline{N}_{\nu} \equiv \underline{\hat{A}}_{\nu}-\lambda_{\nu} \underline{P}_{\nu}$ is the associated nilpotent operator on $\mathcal{U}\left(\lambda_{\nu}\right), \underline{A}_{\nu}-\lambda_{\nu}$, extended as $\underline{0}$ to the rest of \mathcal{V}. (In general, \underline{N}_{ν} is a direct sum of elementary Jordan nilpotents.) Then

$$
f(\underline{A})=\sum_{\nu=1}^{L}\left[f\left(\lambda_{\nu}\right) \underline{P}_{\nu}+\sum_{n=1}^{d_{\nu}-1} \frac{1}{n!} f^{(n)}\left(\lambda_{\nu}\right) \underline{N}_{\nu}^{n}\right] .
$$

(If \underline{N}_{ν} is a nontrivial direct sum, d_{ν} can be replaced by the size of the largest Jordan block associated to λ_{ν}.)

Recall that d_{ν} is the algebraic multiplicity of λ_{ν}. Note that the matrix of $f(\underline{A})$ in the Jordan basis is not necessarily in Jordan canonical form, but is block-diagonal and upper-triangular.
$(\#)$ is an operator equation; it holds without reference to a Jordan basis. Nevertheless, transforming to Jordan canonical form is the most obvious way to calculate the right-hand side of (\#).

Now let's look at some applications of this theorem and of the concept of function of an operator:

Proof of the Hamilton-Cayley theorem

Recall that this theorem says that \underline{A} satisfies its own characteristic equation, $\operatorname{det}(\underline{A}-$ $\lambda)=0$. Since Galperin and Waksman proved the Jordan theorem for us without using the HC theorem, we may use Jordan canonical form to prove HC. (Contrast Bowen \& Wang.)

$$
0=\operatorname{det}(\underline{A}-\lambda)=(-1)^{\operatorname{dim} \mathcal{V}} \prod_{\nu=1}^{L}\left(\lambda-\lambda_{\nu}\right)^{d_{\nu}} \equiv f(\lambda)
$$

Therefore,

$$
f(\underline{A}) \equiv \pm \prod_{\nu=1}^{L}\left(\underline{A}-\lambda_{\nu}\right)^{d_{\nu}} .
$$

For $\vec{v} \in \mathcal{U}\left(\lambda_{\mu}\right)$, we have

$$
f(\underline{A}) \vec{v}= \pm \prod_{\nu \neq \mu}\left(\underline{A}-\lambda_{\nu}\right)^{d_{\nu}}\left(\underline{A}-\lambda_{\mu}\right)^{d_{\mu}} \vec{v} .
$$

But $\left(\underline{A}-\lambda_{\mu}\right)^{d_{\mu}} \vec{v} \equiv \underline{N}_{\mu}{ }^{d_{\mu}} \vec{v}=\overrightarrow{0}$. Since $\mathcal{V}=\mathcal{U}\left(\lambda_{1}\right) \oplus \cdots \oplus \mathcal{U}\left(\lambda_{L}\right)$, it follows that $f(\underline{A})$ is identically $\underline{0}$, QED.

Solving systems of ordinary differential equations

References: Noble \& Daniel, Sec. 10.7.
Williamson and Trotter, Multivariable Mathematics, Chap. 16. Boyce and DiPrima, Chap. 7.

Example:

$$
\begin{aligned}
& \frac{d x}{d t}=5 x+9 y \\
& \frac{d y}{d t}=x+3 y
\end{aligned}
$$

In vector notation, $\frac{d \vec{x}}{d t}=\underline{A} \vec{x}$. Here $\vec{x}=\vec{x}(t)$, and \underline{A} is a constant (i.e., t-independent) linear operator from \mathbf{R}^{2} into \mathbf{R}^{2}.

Suppose \underline{A} can be diagonalized: $S A S^{-1}=D$. Define new variables by $\vec{u} \equiv S \vec{x}$. Then $d \vec{u} / d t=D \vec{u}$. In components this is of the form

$$
\frac{d u}{d t}=\lambda u, \quad \frac{d v}{d t}=\kappa v
$$

where λ and κ are constants. Therefore,

$$
u(t)=u(0) e^{\lambda t}, \quad v(t)=v(0) e^{\kappa t}
$$

I.e.,

$$
\vec{u}(t)=e^{t D} \vec{u}(0)
$$

This relation is independent of basis, so

$$
\begin{equation*}
\vec{x}(t)=e^{t \underline{A}} \vec{x}(0) \tag{*}
\end{equation*}
$$

[In detail: $\vec{x}(t)=S^{-1} \vec{u}(t)=S^{-1} e^{t D} S \vec{x}(0)=e^{t S^{-1} D S} \vec{x}(0)=e^{t A} \vec{x}(0)$. It is important to remember to transform back to the \vec{x} coordinates before imposing numerical initial conditions or interpreting the answer.]

The formula $(*)$ can be interpreted in two ways:

1. as shorthand for the process of diagonalizing A, finding $\vec{u}(t)$, and calculating $\vec{x}(t)$ as $S^{-1} \vec{u}(t)$;
2. as a direct formula for $\vec{x}(t)$, without reference to diagonalization. It's useful if we can calculate $e^{t \underline{A}}$ directly - say by power series. It's also useful for theoretical purposes when we don't need to calculate the solution explicitly.

Now suppose \underline{A} can't be diagonalized:

$$
S A S^{-1}=D+N=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
& \ddots & \ddots \\
0 & & \ddots
\end{array}\right) \equiv M
$$

Claim: $\vec{x}(t)=e^{t \underline{A}} \vec{x}(0)$ still.
Let's choose a Jordan basis and investigate this claim. The formula becomes

$$
\vec{u}(t)=e^{t M} \vec{u}(0)
$$

Let's evaluate this and compare it with a direct solution of the differential equation:
(1) According to our basic formula (\#) for a function of an operator,

$$
\begin{aligned}
e^{t \underline{A}} & =\sum_{\nu=1}^{L}\left[e^{t \lambda_{\nu}} \underline{P}_{\nu}+\sum_{n=1}^{d_{\nu}-1} \frac{1}{n!}\left(\frac{d}{d \lambda}\right)^{n} e^{t \lambda_{\nu}} \underline{N}_{\nu}{ }^{n}\right] \\
& =\sum_{\nu=1}^{L}\left[e^{t \lambda_{\nu}} \underline{P}_{\nu}+\sum_{n=1}^{d_{\nu}-1} \frac{1}{n!} t^{n} e^{t \lambda_{\nu}} \underline{N}_{\nu}{ }^{n}\right] .
\end{aligned}
$$

In a Jordan basis, the matrix of $e^{t \underline{A}}$ is $e^{t M}$, where each $p \times p$ Jordan block of $e^{t M}$ looks like

$$
e^{t \lambda_{\nu}}\left(\begin{array}{cccccc}
1 & t & \frac{1}{2} t^{2} & \frac{1}{6} t^{3} & \cdots & \frac{1}{(p-1)!} t^{p-1} \\
& 1 & t & \frac{1}{2} t^{2} & & \\
& & 1 & t & \ddots & \\
& & & 1 & \ddots & \\
0 & & & & \ddots &
\end{array}\right)
$$

for some $p \leq d_{\nu}$.
(2) We can solve the equation by elementary means if we work in the Jordan basis. For simplicity let's consider a 3×3 example,

$$
M=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) ; \quad \lambda_{\nu}=\lambda, \quad \vec{u} \equiv\left(\begin{array}{c}
u(t) \\
v(t) \\
w(t)
\end{array}\right)
$$

Then $d \vec{u} / d t=M \vec{u}$ means

$$
\begin{aligned}
\frac{d u}{d t} & =\lambda u+v \\
\frac{d v}{d t} & =\lambda v+w \\
\frac{d w}{d t} & =\lambda w
\end{aligned}
$$

[Note: u, v, w are not basis vectors, but rather components of the vector-valued function

$$
\vec{u}=u \vec{e}_{1}+v \vec{e}_{2}+w \vec{e}_{3}
$$

where the basis vectors satisfy the Jordan-chain relations

$$
M \vec{e}_{3}=\lambda \vec{e}_{3}+\vec{e}_{2}, \quad M \vec{e}_{2}=\lambda \vec{e}_{2}+\vec{e}_{1}, \quad M \vec{e}_{1}=\lambda \vec{e}_{1}
$$

As usual, the matrix acting on the coordinates is the transpose of that acting on the basis vectors.] We can easily solve this system from the bottom up:

$$
\begin{gathered}
w(t)=w(0) e^{\lambda t} \\
\frac{d v}{d t}=\lambda v+w(0) e^{\lambda t} \\
v(t)=v(0) e^{\lambda t}+w(0) t e^{\lambda t} \\
\frac{d u}{d t}=\lambda u+v(0) e^{\lambda t}+w(0) t e^{\lambda t} \\
u(t)=u(0) e^{\lambda t}+v(0) t e^{\lambda t}+\frac{1}{2} w(0) t^{2} e^{\lambda t}
\end{gathered}
$$

Thus

$$
\begin{aligned}
\left(\begin{array}{c}
u \\
w \\
w
\end{array}\right) & =e^{\lambda t}\left(\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
u(0) \\
v(0) \\
w(0)
\end{array}\right) \\
& \equiv e^{t M} \vec{u}(0)=\vec{u}(t)
\end{aligned}
$$

in agreement with (1). Clearly the argument is general, although our presentation was for an example.

The concept of the exponential operator as solution operator generalizes to partial differential equations: Consider

$$
\frac{\partial u}{\partial t}=-\underline{A} u, \quad u=u(t, x), \quad u(0, x)=f(x) \text { given }
$$

where $\underline{A}: \mathcal{L}^{2}\left(\mathbf{R}^{m}\right) \rightarrow \mathcal{L}^{2}\left(\mathbf{R}^{m}\right)$ is a positive, self-adjoint operator (e.g., $\underline{A}=-\nabla^{2}$). The solution can be written

$$
u(t, x)=\left[e^{-t \underline{A}} f\right](x)
$$

Rather than use this formula to obtain an explicit numerical solution, the usual application is in the reverse direction: Direct study of $e^{-t \underline{A}}$ by PDE methods gives useful information about \underline{A} and its eigenfunctions.

Another generalization (to second-order ODEs) is indicated in one of the homework problems. It involves functions other than the exponential.

