Orthogonality (Sec. 13)

Definition: \vec{v} is orthogonal to a set \mathcal{S} if \vec{v} is orthogonal to every vector \vec{u} in $\mathcal{S} \quad(\vec{u} \cdot \vec{v}=0)$.
Definition: A set \mathcal{S} (in particular, a basis) is orthogonal if $\vec{u} \cdot \vec{v}=0$ for all $\vec{u}, \vec{v} \in \mathcal{S}$ with $\vec{u} \neq \vec{v}$.

Definition: \mathcal{S} is orthonormal if it is orthogonal and also $\|\vec{u}\|=1, \forall \vec{u} \in \mathcal{S}$. (I.e., $\vec{u}_{j} \cdot \vec{u}_{k}=$ $\delta_{j k}$.)

Note: An orthogonal $(O G)$ set not containing $\overrightarrow{0}$ can be made orthonormal (ON) by replacing each \vec{u} in it by $\hat{u} \equiv \frac{\vec{u}}{\|\vec{u}\|}$.

Theorem 13.1^{\prime}. An orthogonal set not containing $\overrightarrow{0}$ is linearly independent.

Proof: $\sum \lambda^{j} \vec{u}_{j}=\overrightarrow{0} \Rightarrow 0=\left(\sum \lambda^{j} \vec{u}_{j}\right) \cdot \vec{u}_{k}=\lambda^{k}\left\|\vec{u}_{k}\right\|^{2}$.
Convention: From now on, when I speak of an orthogonal set, it will be tacitly understood that the set does not contain the zero vector.

Temporary definition: An orthogonal set \mathcal{S} (not containing $\overrightarrow{0}$) is maximal (also called complete) in \mathcal{V} if one of these equivalent conditions is satisfied:
(A) \mathcal{S} is not a proper subset of any larger orthogonal set [in $\mathcal{V}]$.
(B) The only vector [in $\mathcal{V}]$ orthogonal to \mathcal{S} is $\overrightarrow{0}$.

THEOREM 13.2'. If \mathcal{V} is finite-dimensional, an orthogonal set (not containing $\overrightarrow{0}$) is a basis [for \mathcal{V}] iff it is maximal.

Proof:
(a) maximal \Rightarrow basis: Will be a corollary of the Gram-Schmidt theorem, proved (noncircularly) below.
(b) $\underline{\text { basis } \Rightarrow \text { maximal: }}$ Not maximal \Rightarrow can create larger OG set \Rightarrow larger independent set \Rightarrow original set wasn't a basis.

Remark: In an infinite-dimensional Hilbert space, a maximal OG set is not a Hamel basis, but is a basis with respect to convergent infinite sums, convergence being defined with respect to the norm:

$$
\sum_{j=1}^{\infty} \lambda^{j} \vec{u}_{j}=\vec{w} \quad \text { means } \quad \lim _{N \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda^{j} \vec{u}_{j}-\vec{w}\right\|=0 .
$$

In this ∞-dim. context, the proof of Thm. $13.2^{\prime}(\mathrm{a})$ needs to be replaced by a totally different argument:

Projection Theorem (Beppo-Levi's Theorem). Let \mathcal{U} be a (topologically) closed subspace of a Hilbert space \mathcal{H}. Let $\vec{v} \in \mathcal{H}$ but $\vec{v} \notin \mathcal{U}$. Then there is a unique $\vec{u}_{0} \in \mathcal{U}$ which minimizes the distance from \vec{v} to \mathcal{U} :

$$
0<\inf _{u \in \mathcal{U}}\|\vec{u}-\vec{v}\|=\left\|\vec{u}_{0}-\vec{v}\right\| \quad\left(=\min _{\vec{u} \in \mathcal{U}}\|\vec{u}-\vec{v}\|\right) .
$$

The vector $\vec{u}_{0}-\vec{v}$ is orthogonal to \mathcal{U}.

Proof: See Milne, pp. 185-187, or Math. 642.

Corollary. If \mathcal{U} is a proper, closed subspace of a Hilbert space \mathcal{H}, then there exists in \mathcal{H} a nonzero vector orthogonal to \mathcal{U}.

The set of finite linear combinations of the vectors in an OG set is not a closed subspace; but that set together with all its limit points (the infinite linear combinations) is closed. The analogue of Thm. 13.2 follows: an OG set is maximal iff it is a basis in the extended sense, allowing infinite sums.

Example (Fourier cosine series): $\mathcal{H}=\mathcal{L}^{2}(0, \pi)$. An OG basis (in the extended sense) is $\left\{1, \cos n x\left(n \in \mathbf{Z}_{+}\right)\right\}$:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

where

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x, \quad a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos n x f(x) d x ; \\
a_{0}=\frac{1 \cdot f}{\|1\|^{2}}, \quad\|1\|^{2}=\int_{0}^{\pi} 1 d x=\pi, \\
a_{n}=\frac{(\cos n x) \cdot f}{\|\cos n x\|^{2}}, \quad\|\cos n x\|^{2}=\int_{0}^{\pi} \cos ^{2} n x d x=\frac{\pi}{2} .
\end{gathered}
$$

The corresponding ON basis is $\left\{\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}} \cos n x\right\}$. (Incidentally, this example shows how an OG basis may be more convenient than the related ON basis.)

Theorem. Let \mathcal{V} be a vector space of finite dimension M. If $\left\{\hat{e}_{j}\right\}_{j=1}^{M}$ is an $O N$ basis, then every $\vec{v} \in \mathcal{V}$ can be expressed as

$$
\vec{v}=\sum_{j=1}^{M} \lambda^{j} \hat{e}_{j}, \quad \lambda^{j}=\vec{v} \cdot \hat{e}_{j} .
$$

If $\left\{\vec{e}_{j}\right\}$ is an $O G$ basis, then

$$
\vec{v}=\sum_{j=1}^{M} \lambda^{j} \vec{e}_{j}, \quad \lambda^{j}=\frac{\vec{v} \cdot \vec{e}_{j}}{\left\|\vec{e}_{j}\right\|^{2}}
$$

Proof: Implicit in proof of Thm. 13.1'. [Why is the denominator squared in the final equation?]

Gram-Schmidt process

Given a countable $\left\{\begin{array}{c}\text { basis } \\ \text { set }\end{array}\right\}$ of vectors, one can construct an OG (in fact, ON) $\left\{\begin{array}{l}\text { basis } \\ \text { set with the same span }\end{array}\right\}$.

Example and geometrical interpretation: Consider $L^{2}(-1,1)$. Let $\mathcal{V}=$ subspace of polynomials, restricted to $[-1,1]$ and equipped with the same inner product, $\int_{-1}^{1} f(x) \overline{g(x)} d x$. The functions may be either real- or complex-valued.

The obvious basis, $\left\{x^{n}\right\}_{n=0}^{\infty}$, is not OG. Let $\vec{e}_{0}=x^{0}=1$. (To normalize: $\hat{e}_{0}=\frac{\vec{e}_{0}}{\left\|\vec{e}_{0}\right\|}=$ $\frac{1}{\sqrt{2}}$.) Now conceivably $\left(x^{1}\right) \cdot \vec{e}_{0} \neq 0$. Break x^{1} into components parallel and perpendicular to \vec{e}_{0} :

Claim: $x_{\|}^{1}=\left[\left(x^{1}\right) \cdot \vec{e}_{0}\right] \frac{\vec{e}_{0}}{\left\|\vec{e}_{0}\right\|^{2}}$; hence $x_{\perp}^{1}=x^{1}-x_{\|}^{1}=\cdots$.
Verify: $\left\{x^{1}-\left[\left(x^{1}\right) \cdot \vec{e}_{0}\right] \frac{\vec{e}_{0}}{\left\|\vec{e}_{0}\right\|^{2}}\right\} \cdot \vec{e}_{0}=\left(x^{1}\right) \cdot \vec{e}_{0}-\left(x^{1}\right) \cdot e_{0}=0$.

In example: $\left(x^{1}\right) \cdot \vec{e}_{0}=\int_{-1}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=0$ after all. Therefore, $x_{\|}^{1}=\overrightarrow{0}, \vec{e}_{1} \equiv x_{\perp}^{1}=$ $x^{1}=x$.

$$
\left\|\vec{e}_{1}\right\|^{2}=\int_{-1}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} \Rightarrow \hat{e}_{1}=\sqrt{\frac{3}{2}} x
$$

Next step: \vec{e}_{0} and \vec{e}_{1} span a plane.
$x_{\|}^{2}=$ projection of x^{2} onto that plane $=\left[\left(x^{2}\right) \cdot \vec{e}_{0}\right] \frac{\vec{e}_{0}}{\left\|\vec{e}_{0}\right\|^{2}}+\left[\left(x^{2}\right) \cdot \vec{e}_{1}\right] \frac{\vec{e}_{1}}{\left\|\vec{e}_{1}\right\|^{2}}$.

$$
\begin{aligned}
\vec{e}_{2} & \equiv x_{\perp}^{2}=x^{2}-x_{\|}^{2} \\
& =x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle} 1-\frac{\left\langle x^{2}, x\right\rangle}{\langle x, x\rangle} x \quad \text { in the more common bracket notation } \\
& =x^{2}-\frac{1}{3}
\end{aligned}
$$

Therefore $\hat{e}_{2}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)$.

General case: Projection of $\vec{v} \equiv \vec{v}_{n}$ onto $\mathcal{U} \equiv \operatorname{span}\left\{\vec{e}_{0}, \ldots, \vec{e}_{n-1}\right\}$ is

$$
\vec{v}_{\|}=\sum_{j=0}^{n-1} \frac{\left(\vec{v} \cdot \vec{e}_{j}\right)}{\left\|\vec{e}_{j}\right\|^{2}} \vec{e}_{j}=\sum_{j=0}^{n-1}\left(\vec{v} \cdot \hat{e}_{j}\right) \hat{e}_{j} .
$$

Note that if \vec{v} is in the span \mathcal{U}, then $\vec{v}_{\|}=\vec{v}$ by the (unnumbered) theorem above. (Otherwise, by the projection theorem, $\vec{v}_{\|}$is the best approximation to \vec{v} by a vector in \mathcal{U}, and $\vec{v}_{\perp} \equiv \vec{v}-\vec{v}_{\|}$is the error left over (i.e., $\left\|\vec{v}_{\perp}\right\|$ is the shortest distance from \vec{v} to \mathcal{U}).) If $\vec{v} \in \mathcal{U}$, it can be dropped from the list without changing the span. Otherwise, take $\vec{e}_{j} \equiv \vec{v}_{\perp} \neq \overrightarrow{0}$. Continuing inductively, we build up an OG set without changing the span.

The polynomials

$$
\vec{e}_{0}=1, \quad \vec{e}_{1}=x, \quad \vec{e}_{2}=x^{2}-\frac{1}{3}, \quad \cdots
$$

are called Legendre polynomials. More precisely, $P_{n}(x)=N_{n} \vec{e}_{n}$ is the Legendre polynomial, when the normalization constant N_{n} is chosen by requiring $P_{n}(1)=1$. The functions $P_{n}(\cos \theta)$ arise naturally in solving PDEs in spherical coordinates by separation of variables. Notice that the change of variables from θ to $x \equiv \cos \theta$ compensates for the factor $\sin \theta$ in the normalization integral arising from the Cartesian-to-polar Jacobian, $J=r^{2} \sin \theta$:

$$
\int_{-1}^{1} d x \quad \rightarrow \quad \int_{0}^{\pi} \sin \theta d \theta
$$

Generalization: For any interval $[a, b] \subseteq \mathbf{R}$ and any positive "weight function" $w(x)$ we can define an inner product by

$$
\|f\|_{w}^{2} \equiv \int_{a}^{b}|f(x)|^{2} w(x) d x
$$

If w is such that $\left\|x^{n}\right\|_{w}<\infty$ for all $n=0,1,2, \ldots$, this is an inner product on the space of polynomials. We can use Gram-Schmidt to construct the corresponding orthogonal polynomials. Special cases with applications:

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|f(x)|^{2} e^{-x^{2}} d x \Rightarrow \text { Hermite polynomials (harmonic oscillator) } \\
& \int_{0}^{\infty}|f(x)|^{2} e^{-x} x^{\alpha} d x \Rightarrow \text { Laguerre polynomials (hydrogen atom) } \\
& \int_{-1}^{1}|f(x)|^{2} \frac{d x}{\sqrt{1-x^{2}}} \Rightarrow \text { Chebyshev polynomials (used in approximation theory) }
\end{aligned}
$$

Finish proof of Thm. 13.2^{\prime} (a) (maximal OG set \Rightarrow basis): OG \Rightarrow independent \Rightarrow can be extended to a basis, at least. Use Gram-Schmidt to orthogonalize the new vectors, if any (leaving the old ones alone). Thus if extension was necessary, we get a larger OG set, contradicting maximality.

Orthogonal complements

Definition: Let \mathcal{U} be any set $\subset \mathcal{V}$ (not necessarily a subspace). The orthogonal complement of \mathcal{U} is the set of all vectors orthogonal to \mathcal{U} :

$$
\mathcal{U}^{\perp} \equiv\{\vec{v}: \vec{v} \cdot \vec{u}=0 \forall \vec{u} \in \mathcal{U}\} .
$$

Theorem 13.4'

(a) \mathcal{U}^{\perp} is a subspace.
(b) If \mathcal{U} is a subspace and is finite-dimensional, then $\mathcal{V}=\mathcal{U} \oplus \mathcal{U}^{\perp}$. (I.e., orthogonal complements are direct complements.) More precisely, every $\vec{v} \in \mathcal{V}$ has the decomposition

$$
\vec{v}=\vec{v}_{\|}+\vec{v}_{\perp}, \quad \vec{v}_{\|} \in \mathcal{U}, \quad \vec{v}_{\perp} \in \mathcal{U}^{\perp}
$$

and $\|\vec{v}\|^{2}=\left\|\vec{v}_{\|}\right\|^{2}+\left\|\vec{v}_{\perp}\right\|^{2}$ (generalized Pythagorean theorem).
Proof: See book. The proof of (b) amounts to the construction of $\vec{v}_{\|}$and \vec{v}_{\perp} for all $\vec{v} \in \mathcal{V}$, as in Gram-Schmidt.

REMARK: If \mathcal{U} is an infinite-dimensional subspace, then $\mathcal{V}=\mathcal{U} \oplus \mathcal{U}^{\perp}$ if \mathcal{U} is also closed in the topological sense (contains its limit points in the sense of convergence defined by the norm). This and all my similar infinite-dimensional remarks assume that \mathcal{V} itself is complete (a Hilbert space) - i.e., all Cauchy sequences converge. (A sequence $\left\{\vec{v}_{n}\right\}$ is a Cauchy sequence if $\forall \epsilon>0 \exists M$ such that $\forall m, n>M, \quad\left\|\vec{v}_{n}-\vec{v}_{m}\right\|<\epsilon$.)

Coordinate expressions for the inner product

Let $\left\{\hat{e}_{j}\right\}$ be an ON basis, $\vec{v}=\sum \lambda^{j} \hat{e}_{j}, \quad \vec{u}=\sum \mu^{j} \hat{e}_{j}$. Then

$$
\begin{gathered}
\vec{v} \cdot \vec{u}=\sum_{j} \sum_{k} \lambda^{j} \overline{\mu^{k}} \hat{e}_{j} \cdot \hat{e}_{k}=\sum_{j} \lambda^{j} \overline{\mu^{j}}, \\
\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}=\sum_{j}\left|\lambda^{j}\right|^{2} .
\end{gathered}
$$

[Cf. dot product in \mathbf{R}^{n}.]
If $\left\{\vec{d}_{j}\right\}$ is any basis, define $g_{j k} \equiv \vec{d}_{j} \cdot \vec{d}_{k}$. Then $\vec{v}=\sum \lambda^{j} \vec{d}_{j}, \quad \vec{u}=\sum \mu^{j} \vec{d}_{j}$ implies

$$
\vec{v} \cdot \vec{u}=\sum_{j} \sum_{k} \lambda^{j} \overline{\mu^{k}} g_{j k}, \quad\|\vec{v}\|^{2}=\sum_{j} \sum_{k} \lambda^{j} \overline{\lambda^{k}} g_{j k}
$$

The Legendre polynomials, normalized so that $P_{n}(1)=1$, provide an example of a basis for which $g_{j k}=0$ if $j \neq k$, but $g_{j j} \neq 1$.

Generalized to manifolds, $\left\{g_{j k}\right\}$ becomes the metric tensor, which plays a central role in differential geometry and general relativity.
[Discussion of Sec. 14 postponed.]

