# Orthogonality (Sec. 13)

DEFINITION:  $\vec{v}$  is orthogonal to a set S if  $\vec{v}$  is orthogonal to every vector  $\vec{u}$  in S  $(\vec{u} \cdot \vec{v} = 0)$ .

DEFINITION: A set S (in particular, a basis) is orthogonal if  $\vec{u} \cdot \vec{v} = 0$  for all  $\vec{u}, \vec{v} \in S$  with  $\vec{u} \neq \vec{v}$ .



DEFINITION: S is orthonormal if it is orthogonal and also  $\|\vec{u}\| = 1$ ,  $\forall \vec{u} \in S$ . (I.e.,  $\vec{u}_j \cdot \vec{u}_k = \delta_{jk}$ .)

NOTE: An orthogonal (OG) set not containing  $\vec{0}$  can be made orthonormal (ON) by replacing each  $\vec{u}$  in it by  $\hat{u} \equiv \frac{\vec{u}}{\|\vec{u}\|}$ .

THEOREM 13.1'. An orthogonal set not containing  $\vec{0}$  is linearly independent.

PROOF:  $\sum \lambda^j \vec{u}_j = \vec{0} \Rightarrow 0 = \left(\sum \lambda^j \vec{u}_j\right) \cdot \vec{u}_k = \lambda^k \|\vec{u}_k\|^2.$ 

CONVENTION: From now on, when I speak of an orthogonal set, it will be tacitly understood that the set does not contain the zero vector.

TEMPORARY DEFINITION: An orthogonal set S (not containing  $\vec{0}$ ) is maximal (also called complete) in V if one of these equivalent conditions is satisfied:

- (A)  $\mathcal{S}$  is not a proper subset of any larger orthogonal set [in  $\mathcal{V}$ ].
- (B) The only vector  $[in \mathcal{V}]$  orthogonal to  $\mathcal{S}$  is  $\vec{0}$ .

THEOREM 13.2'. If  $\mathcal{V}$  is finite-dimensional, an orthogonal set (not containing  $\vec{0}$ ) is a basis [for  $\mathcal{V}$ ] iff it is maximal.

### Proof:

- (a)  $\underline{\text{maximal}} \Rightarrow \underline{\text{basis}}$ : Will be a corollary of the Gram-Schmidt theorem, proved (noncircularly) below.
- (b) <u>basis</u>  $\Rightarrow$  <u>maximal</u>: Not maximal  $\Rightarrow$  can create larger OG set  $\Rightarrow$  larger independent set  $\Rightarrow$  original set wasn't a basis.

REMARK: In an infinite-dimensional Hilbert space, a maximal OG set is not a Hamel basis, but *is* a basis with respect to convergent infinite sums, convergence being defined with respect to the norm:

$$\sum_{j=1}^{\infty} \lambda^j \vec{u}_j = \vec{w} \quad \text{means} \quad \lim_{N \to \infty} \left\| \sum_{j=1}^N \lambda^j \vec{u}_j - \vec{w} \right\| = 0$$

In this  $\infty$ -dim. context, the proof of Thm. 13.2'(a) needs to be replaced by a totally different argument:

**Projection Theorem (Beppo-Levi's Theorem).** Let  $\mathcal{U}$  be a (topologically) closed subspace of a Hilbert space  $\mathcal{H}$ . Let  $\vec{v} \in \mathcal{H}$  but  $\vec{v} \notin \mathcal{U}$ . Then there is a unique  $\vec{u}_0 \in \mathcal{U}$  which minimizes the distance from  $\vec{v}$  to  $\mathcal{U}$ :

$$0 < \inf_{u \in \mathcal{U}} \|\vec{u} - \vec{v}\| = \|\vec{u}_0 - \vec{v}\| \quad \left( = \min_{\vec{u} \in \mathcal{U}} \|\vec{u} - \vec{v}\| \right).$$

The vector  $\vec{u}_0 - \vec{v}$  is orthogonal to  $\mathcal{U}$ .



PROOF: See Milne, pp. 185–187, or Math. 642.

**Corollary.** If  $\mathcal{U}$  is a proper, closed subspace of a Hilbert space  $\mathcal{H}$ , then there exists in  $\mathcal{H}$  a nonzero vector orthogonal to  $\mathcal{U}$ .

The set of finite linear combinations of the vectors in an OG set is not a closed subspace; but that set together with all its limit points (the infinite linear combinations) is closed. The analogue of Thm. 13.2' follows: an OG set is maximal iff it is a basis in the extended sense, allowing infinite sums.

EXAMPLE (Fourier cosine series):  $\mathcal{H} = \mathcal{L}^2(0, \pi)$ . An OG basis (in the extended sense) is  $\{1, \cos nx \ (n \in \mathbf{Z}_+)\}$ :

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx,$$

where

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx, \qquad a_{n} = \frac{2}{\pi} \int_{0}^{\pi} \cos nx \ f(x) dx;$$
$$a_{0} = \frac{1 \cdot f}{\|1\|^{2}}, \qquad \|1\|^{2} = \int_{0}^{\pi} 1 \, dx = \pi,$$
$$a_{n} = \frac{(\cos nx) \cdot f}{\|\cos nx\|^{2}}, \qquad \|\cos nx\|^{2} = \int_{0}^{\pi} \cos^{2} nx \, dx = \frac{\pi}{2}$$

The corresponding ON basis is  $\{\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}} \cos nx\}$ . (Incidentally, this example shows how an OG basis may be more convenient than the related ON basis.)

**Theorem.** Let  $\mathcal{V}$  be a vector space of finite dimension M. If  $\{\hat{e}_j\}_{j=1}^M$  is an ON basis, then every  $\vec{v} \in \mathcal{V}$  can be expressed as

$$\vec{v} = \sum_{j=1}^{M} \lambda^j \hat{e}_j, \qquad \lambda^j = \vec{v} \cdot \hat{e}_j.$$

If  $\{\vec{e}_j\}$  is an OG basis, then

$$\vec{v} = \sum_{j=1}^{M} \lambda^j \vec{e}_j, \qquad \lambda^j = \frac{\vec{v} \cdot \vec{e}_j}{\|\vec{e}_j\|^2}$$

PROOF: Implicit in proof of Thm. 13.1'. [Why is the denominator squared in the final equation?]

## GRAM-SCHMIDT PROCESS

Given a countable  $\begin{cases} basis \\ set \end{cases}$  of vectors, one can construct an OG (in fact, ON)  $\begin{cases} basis \\ set with the same span \end{cases}$ .

EXAMPLE AND GEOMETRICAL INTERPRETATION: Consider  $L^2(-1,1)$ . Let  $\mathcal{V} =$  subspace of polynomials, restricted to [-1,1] and equipped with the same inner product,  $\int_{-1}^{1} f(x) \overline{g(x)} dx$ . The functions may be either real- or complex-valued.

The obvious basis,  $\{x^n\}_{n=0}^{\infty}$ , is not OG. Let  $\vec{e}_0 = x^0 = 1$ . (To normalize:  $\hat{e}_0 = \frac{\vec{e}_0}{\|\vec{e}_0\|} = \frac{1}{\sqrt{2}}$ .) Now conceivably  $(x^1) \cdot \vec{e}_0 \neq 0$ . Break  $x^1$  into components parallel and perpendicular to  $\vec{e}_0$ :



Claim:  $x_{\parallel}^{1} = [(x^{1}) \cdot \vec{e}_{0}] \frac{\vec{e}_{0}}{\|\vec{e}_{0}\|^{2}}$ ; hence  $x_{\perp}^{1} = x^{1} - x_{\parallel}^{1} = \cdots$ .

Verify: 
$$\left\{ x^1 - [(x^1) \cdot \vec{e}_0] \frac{\vec{e}_0}{\|\vec{e}_0\|^2} \right\} \cdot \vec{e}_0 = (x^1) \cdot \vec{e}_0 - (x^1) \cdot e_0 = 0.$$

In example:  $(x^1) \cdot \vec{e}_0 = \int_{-1}^1 x \, dx = \frac{x^2}{2} \Big|_{-1}^1 = 0$  after all. Therefore,  $x_{\parallel}^1 = \vec{0}, \ \vec{e}_1 \equiv x_{\perp}^1 = x^1 = x$ .  $\|\vec{e}_1\|^2 = \int_{-1}^1 x^2 \, dx = \frac{x^3}{3} \Big|_{-1}^1 = \frac{2}{3} \Rightarrow \ \hat{e}_1 = \sqrt{\frac{3}{2}} x.$ 

Next step:  $\vec{e}_0$  and  $\vec{e}_1$  span a plane.

 $x_{\parallel}^2 = \text{projection of } x^2 \text{ onto that plane} = [(x^2) \cdot \vec{e_0}] \frac{\vec{e_0}}{\|\vec{e_0}\|^2} + [(x^2) \cdot \vec{e_1}] \frac{\vec{e_1}}{\|\vec{e_1}\|^2} \,.$ 

$$\begin{split} \vec{e_2} &\equiv x_{\perp}^2 = x^2 - x_{\parallel}^2 \\ &= x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} 1 - \frac{\langle x^2, x \rangle}{\langle x, x \rangle} x \quad \text{in the more common bracket notation} \\ &= x^2 - \frac{1}{3} \,. \end{split}$$

Therefore  $\hat{e}_2 = \sqrt{\frac{45}{8}} \left( x^2 - \frac{1}{3} \right).$ 



General case: Projection of  $\vec{v} \equiv \vec{v}_n$  onto  $\mathcal{U} \equiv \text{span} \{\vec{e}_0, \dots, \vec{e}_{n-1}\}$  is

$$\vec{v}_{\parallel} = \sum_{j=0}^{n-1} \frac{(\vec{v} \cdot \vec{e}_j)}{\|\vec{e}_j\|^2} \vec{e}_j = \sum_{j=0}^{n-1} (\vec{v} \cdot \hat{e}_j) \hat{e}_j.$$

Note that if  $\vec{v}$  is *in* the span  $\mathcal{U}$ , then  $\vec{v}_{\parallel} = \vec{v}$  by the (unnumbered) theorem above. (Otherwise, by the projection theorem,  $\vec{v}_{\parallel}$  is the *best approximation* to  $\vec{v}$  by a vector in  $\mathcal{U}$ , and  $\vec{v}_{\perp} \equiv \vec{v} - \vec{v}_{\parallel}$  is the error left over (i.e.,  $\|\vec{v}_{\perp}\|$  is the shortest distance from  $\vec{v}$  to  $\mathcal{U}$ ).) If  $\vec{v} \in \mathcal{U}$ , it can be dropped from the list without changing the span. Otherwise, take  $\vec{e}_j \equiv \vec{v}_{\perp} \neq \vec{0}$ . Continuing inductively, we build up an OG set without changing the span.

The polynomials

$$\vec{e}_0 = 1, \qquad \vec{e}_1 = x, \qquad \vec{e}_2 = x^2 - \frac{1}{3}, \quad \dots$$

are called Legendre polynomials. More precisely,  $P_n(x) = N_n \vec{e}_n$  is the Legendre polynomial, when the normalization constant  $N_n$  is chosen by requiring  $P_n(1) = 1$ . The functions  $P_n(\cos \theta)$  arise naturally in solving PDEs in spherical coordinates by separation of variables. Notice that the change of variables from  $\theta$  to  $x \equiv \cos \theta$  compensates for the factor  $\sin \theta$  in the normalization integral arising from the Cartesian-to-polar Jacobian,  $J = r^2 \sin \theta$ :

$$\int_{-1}^{1} dx \quad \to \quad \int_{0}^{\pi} \sin \theta \, d\theta$$

GENERALIZATION: For any interval  $[a, b] \subseteq \mathbf{R}$  and any positive "weight function" w(x) we can define an inner product by

$$||f||_w^2 \equiv \int_a^b |f(x)|^2 w(x) \, dx.$$

If w is such that  $||x^n||_w < \infty$  for all  $n = 0, 1, 2, \ldots$ , this is an inner product on the space of polynomials. We can use Gram-Schmidt to construct the corresponding orthogonal polynomials. Special cases with applications:

$$\int_{-\infty}^{\infty} |f(x)|^2 e^{-x^2} dx \Rightarrow \text{Hermite polynomials (harmonic oscillator)}$$
$$\int_{0}^{\infty} |f(x)|^2 e^{-x} x^{\alpha} dx \Rightarrow \text{Laguerre polynomials (hydrogen atom)}$$
$$\int_{-1}^{1} |f(x)|^2 \frac{dx}{\sqrt{1-x^2}} \Rightarrow \text{Chebyshev polynomials (used in approximation theory)}$$

FINISH PROOF OF THM. 13.2'(a) (maximal OG set  $\Rightarrow$  basis): OG  $\Rightarrow$  independent  $\Rightarrow$  can be extended to a basis, at least. Use Gram-Schmidt to orthogonalize the new vectors, if any (leaving the old ones alone). Thus if extension was necessary, we get a larger OG set, contradicting maximality.

#### ORTHOGONAL COMPLEMENTS

**Definition:** Let  $\mathcal{U}$  be any set  $\subset \mathcal{V}$  (not necessarily a subspace). The orthogonal complement of  $\mathcal{U}$  is the set of all vectors orthogonal to  $\mathcal{U}$ :

$$\mathcal{U}^{\perp} \equiv \{ \vec{v} : \vec{v} \cdot \vec{u} = 0 \; \forall \vec{u} \in \mathcal{U} \}.$$

### Theorem 13.4'.

- (a)  $\mathcal{U}^{\perp}$  is a subspace.
- (b) If  $\mathcal{U}$  is a subspace and is finite-dimensional, then  $\mathcal{V} = \mathcal{U} \oplus \mathcal{U}^{\perp}$ . (I.e., orthogonal complements are direct complements.) More precisely, every  $\vec{v} \in \mathcal{V}$  has the decomposition

$$ec{v} = ec{v}_{\parallel} + ec{v}_{\perp}, \qquad ec{v}_{\parallel} \in \mathcal{U}, \quad ec{v}_{\perp} \in \mathcal{U}^{\perp},$$

and  $\|\vec{v}\|^2 = \|\vec{v}_{\parallel}\|^2 + \|\vec{v}_{\perp}\|^2$  (generalized Pythagorean theorem).

PROOF: See book. The proof of (b) amounts to the construction of  $\vec{v}_{\parallel}$  and  $\vec{v}_{\perp}$  for all  $\vec{v} \in \mathcal{V}$ , as in Gram-Schmidt.

REMARK: If  $\mathcal{U}$  is an infinite-dimensional *subspace*, then  $\mathcal{V} = \mathcal{U} \oplus \mathcal{U}^{\perp}$  if  $\mathcal{U}$  is also *closed* in the topological sense (contains its limit points in the sense of convergence defined by the norm). This and all my similar infinite-dimensional remarks assume that  $\mathcal{V}$  itself is *complete* (a Hilbert space) — i.e., all Cauchy sequences converge. (A sequence  $\{\vec{v}_n\}$  is a *Cauchy sequence* if  $\forall \epsilon > 0 \exists M$  such that  $\forall m, n > M$ ,  $\|\vec{v}_n - \vec{v}_m\| < \epsilon$ .)

### COORDINATE EXPRESSIONS FOR THE INNER PRODUCT

Let 
$$\{\hat{e}_j\}$$
 be an ON basis,  $\vec{v} = \sum \lambda^j \hat{e}_j$ ,  $\vec{u} = \sum \mu^j \hat{e}_j$ . Then  
 $\vec{v} \cdot \vec{u} = \sum_j \sum_k \lambda^j \overline{\mu^k} \, \hat{e}_j \cdot \hat{e}_k = \sum_j \lambda^j \overline{\mu^j}$ ,  
 $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v} = \sum_j |\lambda^j|^2$ .

[Cf. dot product in  $\mathbf{R}^n$ .]

If  $\{\vec{d}_j\}$  is any basis, define  $g_{jk} \equiv \vec{d}_j \cdot \vec{d}_k$ . Then  $\vec{v} = \sum \lambda^j \vec{d}_j$ ,  $\vec{u} = \sum \mu^j \vec{d}_j$  implies

$$\vec{v} \cdot \vec{u} = \sum_j \sum_k \lambda^j \overline{\mu^k} g_{jk}, \qquad \|\vec{v}\|^2 = \sum_j \sum_k \lambda^j \overline{\lambda^k} g_{jk}.$$

The Legendre polynomials, normalized so that  $P_n(1) = 1$ , provide an example of a basis for which  $g_{jk} = 0$  if  $j \neq k$ , but  $g_{jj} \neq 1$ .

Generalized to manifolds,  $\{g_{jk}\}$  becomes the *metric tensor*, which plays a central role in differential geometry and general relativity.

[Discussion of Sec. 14 postponed.]