
Orthogonality (Sec. 13)

Definition: ~v is orthogonal to a set S if ~v is orthogonal to every vector ~u in S (~u·~v = 0).

Definition: A set S (in particular, a basis) is orthogonal if ~u ·~v = 0 for all ~u, ~v ∈ S with
~u 6= ~v.
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Definition: S is orthonormal if it is orthogonal and also ‖~u‖ = 1, ∀~u ∈ S. (I.e., ~uj ·~uk =
δjk.)

Note: An orthogonal (OG) set not containing ~0 can be made orthonormal (ON) by
replacing each ~u in it by û ≡ ~u

‖~u‖ .

Theorem 13.1′. An orthogonal set not containing ~0 is linearly independent.

Proof:
∑
λj~uj = ~0 ⇒ 0 =

(∑
λj~uj

)
· ~uk = λk‖~uk‖2.

Convention: From now on, when I speak of an orthogonal set, it will be tacitly under-
stood that the set does not contain the zero vector.

Temporary definition: An orthogonal set S (not containing ~0) is maximal (also called
complete) in V if one of these equivalent conditions is satisfied:

(A) S is not a proper subset of any larger orthogonal set [in V].

(B) The only vector [in V] orthogonal to S is ~0.

Theorem 13.2′. If V is finite-dimensional, an orthogonal set (not containing ~0) is a basis
[for V] iff it is maximal.

Proof:

(a) maximal ⇒ basis: Will be a corollary of the Gram-Schmidt theorem, proved (noncir-
cularly) below.

(b) basis ⇒ maximal: Not maximal ⇒ can create larger OG set ⇒ larger independent
set ⇒ original set wasn’t a basis.
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Remark: In an infinite-dimensional Hilbert space, a maximal OG set is not a Hamel
basis, but is a basis with respect to convergent infinite sums, convergence being defined
with respect to the norm:

∞∑
j=1

λj~uj = ~w means lim
N→∞

∥∥∥∥ N∑
j=1

λj~uj − ~w

∥∥∥∥ = 0.

In this ∞-dim. context, the proof of Thm. 13.2′(a) needs to be replaced by a totally
different argument:

Projection Theorem (Beppo-Levi’s Theorem). Let U be a (topologically) closed
subspace of a Hilbert space H. Let ~v ∈ H but ~v /∈ U . Then there is a unique ~u0 ∈ U which
minimizes the distance from ~v to U :

0 < inf
u∈U
‖~u− ~v‖ = ‖~u0 − ~v‖

(
= min

~u∈U
‖~u− ~v‖

)
.

The vector ~u0 − ~v is orthogonal to U .

•

u u0

v
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Proof: See Milne, pp. 185–187, or Math. 642.

Corollary. If U is a proper, closed subspace of a Hilbert space H, then there exists in H
a nonzero vector orthogonal to U .

The set of finite linear combinations of the vectors in an OG set is not a closed subspace;
but that set together with all its limit points (the infinite linear combinations) is closed.
The analogue of Thm. 13.2′ follows: an OG set is maximal iff it is a basis in the extended
sense, allowing infinite sums.

Example (Fourier cosine series): H = L2(0, π). An OG basis (in the extended sense)
is {1, cosnx (n ∈ Z+)}:

f(x) = a0 +
∞∑
n=1

an cosnx,

where

a0 =
1

π

∫ π

0

f(x) dx, an =
2

π

∫ π

0

cosnx f(x) dx;

a0 =
1 · f
‖1‖2

, ‖1‖2 =

∫ π

0

1 dx = π,

an =
(cosnx) · f
‖ cosnx‖2

, ‖ cosnx‖2 =

∫ π

0

cos2 nx dx =
π

2
.
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The corresponding ON basis is { 1√
π
,
√

2
π cosnx}. (Incidentally, this example shows how

an OG basis may be more convenient than the related ON basis.)

Theorem. Let V be a vector space of finite dimension M . If {êj}Mj=1 is an ON basis, then
every ~v ∈ V can be expressed as

~v =

M∑
j=1

λj êj , λj = ~v · êj .

If {~ej} is an OG basis, then

~v =

M∑
j=1

λj~ej , λj =
~v · ~ej
‖~ej‖2

.

Proof: Implicit in proof of Thm. 13.1′. [Why is the denominator squared in the final
equation?]

Gram-Schmidt process

Given a countable

{
basis

set

}
of vectors, one can construct an OG (in fact, ON){

basis

set with the same span

}
.

Example and geometrical interpretation: Consider L2(−1, 1). Let V = sub-
space of polynomials, restricted to [−1, 1] and equipped with the same inner product,∫ 1

−1 f(x) g(x) dx. The functions may be either real- or complex-valued.

The obvious basis, {xn}∞n=0, is not OG. Let ~e0 = x0 = 1. (To normalize: ê0 = ~e0
‖~e0‖ =

1√
2

.) Now conceivably (x1) ·~e0 6= 0. Break x1 into components parallel and perpendicular

to ~e0:
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x1

x1‖

~e0

x1⊥ ≡ ~e1

Claim: x1‖ = [(x1) · ~e0]
~e0
‖~e0‖2

; hence x1⊥ = x1 − x1‖ = · · ·.

Verify:

{
x1 − [(x1) · ~e0]

~e0
‖~e0‖2

}
· ~e0 = (x1) · ~e0 − (x1) · e0 = 0.
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In example: (x1) · ~e0 =
∫ 1

−1 x dx = x2

2

∣∣1
−1 = 0 after all. Therefore, x1‖ = ~0, ~e1 ≡ x1⊥ =

x1 = x.

‖~e1‖2 =

∫ 1

−1
x2 dx =

x3

3

∣∣∣∣1
−1

=
2

3
⇒ ê1 =

√
3

2
x.

Next step: ~e0 and ~e1 span a plane.

x2‖ = projection of x2 onto that plane = [(x2) · ~e0]
~e0
‖~e0‖2

+ [(x2) · ~e1]
~e1
‖~e1‖2

.

~e2 ≡ x2⊥ = x2 − x2‖

= x2 − 〈x
2, 1〉
〈1, 1〉

1− 〈x
2, x〉
〈x, x〉

x in the more common bracket notation

= x2 − 1

3
.

Therefore ê2 =

√
45

8

(
x2 − 1

3

)
.
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x2‖
~e0 ~e1

~e2

General case: Projection of ~v ≡ ~vn onto U ≡ span {~e0, . . . , ~en−1} is

~v‖ =
n−1∑
j=0

(~v · ~ej)
‖~ej‖2

~ej =
n−1∑
j=0

(~v · êj)êj .

Note that if ~v is in the span U , then ~v‖ = ~v by the (unnumbered) theorem above. (Other-
wise, by the projection theorem, ~v‖ is the best approximation to ~v by a vector in U , and
~v⊥ ≡ ~v−~v‖ is the error left over (i.e., ‖~v⊥‖ is the shortest distance from ~v to U).) If ~v ∈ U ,

it can be dropped from the list without changing the span. Otherwise, take ~ej ≡ ~v⊥ 6= ~0.
Continuing inductively, we build up an OG set without changing the span.

The polynomials

~e0 = 1, ~e1 = x, ~e2 = x2 − 1

3
, . . .
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are called Legendre polynomials. More precisely, Pn(x) = Nn~en is the Legendre polyno-
mial, when the normalization constant Nn is chosen by requiring Pn(1) = 1. The functions
Pn(cos θ) arise naturally in solving PDEs in spherical coordinates by separation of variables.
Notice that the change of variables from θ to x ≡ cos θ compensates for the factor sin θ in
the normalization integral arising from the Cartesian-to-polar Jacobian, J = r2 sin θ:

∫ 1

−1
dx →

∫ π

0

sin θ dθ

Generalization: For any interval [a, b] ⊆ R and any positive “weight function” w(x) we
can define an inner product by

‖f‖2w ≡
∫ b

a

|f(x)|2 w(x) dx.

If w is such that ‖xn‖w <∞ for all n = 0, 1, 2, . . . , this is an inner product on the space
of polynomials. We can use Gram-Schmidt to construct the corresponding orthogonal
polynomials. Special cases with applications:∫ ∞

−∞
|f(x)|2 e−x

2

dx ⇒ Hermite polynomials (harmonic oscillator)

∫ ∞
0

|f(x)|2 e−xxα dx ⇒ Laguerre polynomials (hydrogen atom)

∫ 1

−1
|f(x)|2 dx√

1− x2
⇒ Chebyshev polynomials (used in approximation theory)

Finish proof of Thm. 13.2′(a) (maximal OG set ⇒ basis): OG ⇒ independent ⇒ can
be extended to a basis, at least. Use Gram-Schmidt to orthogonalize the new vectors, if
any (leaving the old ones alone). Thus if extension was necessary, we get a larger OG set,
contradicting maximality.

Orthogonal complements

Definition: Let U be any set ⊂ V (not necessarily a subspace). The orthogonal comple-
ment of U is the set of all vectors orthogonal to U :

U⊥ ≡ {~v : ~v · ~u = 0 ∀~u ∈ U}.
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Theorem 13.4′.

(a) U⊥ is a subspace.

(b) If U is a subspace and is finite-dimensional, then V = U ⊕ U⊥. (I.e., orthogonal com-
plements are direct complements.) More precisely, every ~v ∈ V has the decomposition

~v = ~v‖ + ~v⊥, ~v‖ ∈ U , ~v⊥ ∈ U⊥,

and ‖~v‖2 = ‖~v‖‖2 + ‖~v⊥‖2 (generalized Pythagorean theorem).

Proof: See book. The proof of (b) amounts to the construction of ~v‖ and ~v⊥ for all
~v ∈ V, as in Gram-Schmidt.

Remark: If U is an infinite-dimensional subspace, then V = U ⊕ U⊥ if U is also closed
in the topological sense (contains its limit points in the sense of convergence defined by
the norm). This and all my similar infinite-dimensional remarks assume that V itself is
complete (a Hilbert space) — i.e., all Cauchy sequences converge. (A sequence {~vn} is a
Cauchy sequence if ∀ε > 0∃M such that ∀m, n > M, ‖~vn − ~vm‖ < ε.)

Coordinate expressions for the inner product

Let {êj} be an ON basis, ~v =
∑
λj êj , ~u =

∑
µj êj . Then

~v · ~u =
∑
j

∑
k

λjµk êj · êk =
∑
j

λjµj ,

‖~v‖2 = ~v · ~v =
∑
j

|λj |2.

[Cf. dot product in Rn.]

If {~dj} is any basis, define gjk ≡ ~dj · ~dk . Then ~v =
∑
λj ~dj , ~u =

∑
µj ~dj implies

~v · ~u =
∑
j

∑
k

λjµk gjk , ‖~v‖2 =
∑
j

∑
k

λjλk gjk .

The Legendre polynomials, normalized so that Pn(1) = 1, provide an example of a
basis for which gjk = 0 if j 6= k, but gjj 6= 1.

Generalized to manifolds, {gjk} becomes the metric tensor, which plays a central role
in differential geometry and general relativity.

[Discussion of Sec. 14 postponed.]
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