Orthogonality (Sec. 13)

DEFINITION: ¥ is orthogonal to a set S if ¥ is orthogonal to every vector @in S (@-¢ = 0).
DEFINITION: A set S (in particular, a basis) is orthogonal if @-¢ = 0 for all @, v € S with

i # 7.

b

DEFINITION: S is orthonormal if it is orthogonal and also ||4]| =1, Vi@ € S. (Le., 4; -ty =
Ojk-)

NoOTE: An orthogonal (OG) s
replacing each « in it by @ = |

t not containing 0 can be made orthonormal (ON) by
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THEOREM 13.1’. An orthogonal set not containing 0 is linearly independent.
ProOF: Y Ni; =0 = 0= (3 Ni;) - i = \|idx ||

CONVENTION: From now on, when I speak of an orthogonal set, it will be tacitly under-
stood that the set does not contain the zero vector.

TEMPORARY DEFINITION: An orthogonal set S (not containing 0) is maximal (also called
complete) in V if one of these equivalent conditions is satisfied:

(A) S is not a proper subset of any larger orthogonal set [in V).

(B) The only vector [in V] orthogonal to S is 0.

THEOREM 13.2". IfV is finite-dimensional, an orthogonal set (not containing 0) is a basis
[for V] iff it is maximal.

PROOF:

(a) maximal = basis: Will be a corollary of the Gram-Schmidt theorem, proved (noncir-
cularly) below.

(b) basis = maximal: Not maximal = can create larger OG set = larger independent
set = original set wasn’t a basis.




REMARK: In an infinite-dimensional Hilbert space, a maximal OG set is not a Hamel
basis, but is a basis with respect to convergent infinite sums, convergence being defined
with respect to the norm:
00 N
MNi; =@ means lim Ni; —@|| = 0.
j= j=

In this co-dim. context, the proof of Thm. 13.2'(a) needs to be replaced by a totally
different argument:

Projection Theorem (Beppo-Levi’s Theorem). Let U be a (topologically) closed
subspace of a Hilbert space H. Let ¥ € H but U ¢ U. Then there is a unique iy € U which
minimizes the distance from v to U:

0< inf |G—3 =@y — 7| (=minla—a).
inf ||i@ — 0| = ||t — ( min i )

The vector uy — U is orthogonal to U.
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PROOF: See Milne, pp. 185-187, or Math. 642.

Corollary. IfU is a proper, closed subspace of a Hilbert space H, then there exists in H
a nonzero vector orthogonal to U.

The set of finite linear combinations of the vectors in an OG set is not a closed subspace;
but that set together with all its limit points (the infinite linear combinations) is closed.
The analogue of Thm. 13.2" follows: an OG set is maximal iff it is a basis in the extended
sense, allowing infinite sums.

ExXAMPLE (Fourier cosine series): H = £2(0,7). An OG basis (in the extended sense)
is {1, cosnz (n € Z1)}:

oo
f(x) =ao+ Z ay, COS NI,

n=1

where
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ag ! /07r f(x)dz, ap = E/OFCOS’I”L:L’ f(x)dz;
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The corresponding ON basis is {\/LE’ \/g cosnz}. (Incidentally, this example shows how

an OG basis may be more convenient than the related ON basis.)

Theorem. Let V be a vector space of finite dimension M. If {é, }J]‘il is an ON basis, then
every ¥ € V can be expressed as

= Jp. J_— 7.5,
U—E Neéj, N =17-¢;.
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If {€;} is an OG basis, then

M .8
ﬁ:ZAJa N o=
7 €512

PROOF: Implicit in proof of Thm. 13.1’. [Why is the denominator squared in the final
equation?]

GRAM-SCHMIDT PROCESS
. basis ‘
Given a countable ‘ of vectors, one can construct an OG (in fact, ON)
se

basis
set with the same span [’

EXAMPLE AND GEOMETRICAL INTERPRETATION: Consider L?(—1,1). Let V = sub-
space of polynomials, restricted to [—1,1] and equipped with the same inner product,

f_ll f(x) g(x) dz. The functions may be either real- or complex-valued.

The obvious basis, {z"}22,
L) Now conceivably (z!)- €y # 0. Break z' into components parallel and perpendicular

is not OG. Let &y = 2 = 1. (To normalize: éy = —Hg.g” =

V2
to éb:
|
1
.flfﬁ_ = 51 z :
€0 il
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Claim: z) = [(z") 60]—H€0H2, hence !} = 2! —z =

: I . .
Verlfy:{yc1 — (=) - eo]_,—O”Q} €y = (2') - — (') - eg = 0.



In example: (z!)-é&y = Lllxda: = §|1_1
1

= 0 after all. Therefore, a:‘l = 6, Z

' =, ) .
3
RPN 9 x 2 . 3
= dr=—| == = é;=4/-x.
= [ atar="| =3 = a=y3
Next step: €y and €7 span a plane.
2 F et 2 2y .z €o 2\ > €
|| = projection of 2= onto that plane = [(z”) - €] EAE + [(z7) - €1] EAE
€0 1
ey =22 =a%— xﬁ
2 1 2
=z — (2 >1 — (27, 7) x in the more common bracket notation
(1,1) (z,z)
1
2
=x°— .
3
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Therefore é; =/ — (22 — = ).
erefore é 3 (:): 3)
General case: Projection of ¢ = #,, onto U = span {€p,...,€,_1} is

Note that if ¥ is in the span U, then 9| = ¢ by the (unnumbered) theorem above. (Other-
wise, by the projection theorem, @ is the best approximation to ¥ by a vector in U, and
vy = U'—0) is the error left over (i.e., |#. || is the shortest distance from #'to /).) If 7 € U,

it can be dropped from the list without changing the span. Otherwise, take €; = | # 0.

Continuing inductively, we build up an OG set without changing the span.

The polynomials



are called Legendre polynomials. More precisely, P,(z) = N,é, is the Legendre polyno-
mial, when the normalization constant NV, is chosen by requiring P, (1) = 1. The functions
P, (cos ) arise naturally in solving PDEs in spherical coordinates by separation of variables.
Notice that the change of variables from 6 to x = cos 6 compensates for the factor sinf in
the normalization integral arising from the Cartesian-to-polar Jacobian, J = r2 sin 0:

1 ™
/ der — / sin 8 d@
-1 0

GENERALIZATION: For any interval [a,b] C R and any positive “weight function” w(x) we
can define an inner product by

b
112 = / @) w(s) da

If w is such that ||z"|, < oo for all n =0, 1, 2,..., this is an inner product on the space
of polynomials. We can use Gram-Schmidt to construct the corresponding orthogonal
polynomials. Special cases with applications:

/ |f(z)]? e~ dz = Hermite polynomials (harmonic oscillator)

— OO

oo
/ |f(z)|? e 2% dxr = Laguerre polynomials (hydrogen atom)
0
! 5 dz
/ |f(z)] Wi = Chebyshev polynomials (used in approximation theory)
—1 —_—

FINISH PROOF OF THM. 13.2'(a) (maximal OG set = basis): OG = independent = can
be extended to a basis, at least. Use Gram-Schmidt to orthogonalize the new vectors, if
any (leaving the old ones alone). Thus if extension was necessary, we get a larger OG set,
contradicting maximality.

ORTHOGONAL COMPLEMENTS

Definition: Let U be any set C V (not necessarily a subspace). The orthogonal comple-
ment of U is the set of all vectors orthogonal to U:

uj_
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Theorem 13.4'.
(a) U™ is a subspace.

(b) IfU is a subspace and is finite-dimensional, then V = U ®U*. (Le., orthogonal com-
plements are direct complements.) More precisely, every v € V has the decomposition

— — — — — 1
U=+ UL, U||€u, v eu—,

and ||7]|* = ||9)[|* + ||UL||* (generalized Pythagorean theorem).

PROOF: See book. The proof of (b) amounts to the construction of % and ¥, for all
v € V, as in Gram-Schmidt.

REMARK: If ¢/ is an infinite-dimensional subspace, then V = U & UL if U is also closed
in the topological sense (contains its limit points in the sense of convergence defined by
the norm). This and all my similar infinite-dimensional remarks assume that V itself is

complete (a Hilbert space) — i.e., all Cauchy sequences converge. (A sequence {,} is a
Cauchy sequence if Ve > 03M such that Vm, n > M, ||¥,, — U < €.)

COORDINATE EXPRESSIONS FOR THE INNER PRODUCT

Let {é;} be an ON basis, 7= > Né;, @ =) p’é;. Then

o2 = -5 = Y VP
J
[Cf. dot product in R™ ]

If {d;} is any basis, define g;;, = d; -dy,. Then @ = Z)&i}, U= Z/ﬂcfj implies
gea=) Y NpFgp, TP =)) N g,
Jj k j k
The Legendre polynomials, normalized so that P,(1) = 1, provide an example of a

basis for which g;, = 0 if j # k, but g;; # 1.

Generalized to manifolds, {g,x} becomes the metric tensor, which plays a central role
in differential geometry and general relativity.

[Discussion of Sec. 14 postponed.]



