3. EQUIVALENCE CLASSES OF IRROTATIONAL VECTOR FIELDS (a step toward cohomology)

DEFINITION: A vector field is a (usually nonlinear) function A:R™ — R™ — or, an as-
signment of an “arrow” A(Z) to each point in space.
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When n = 2, we’ll use the notations x T, r° =,

Let’s review some well known results of vector calculus:

THEOREM. If A; = (‘3—V for some V:R? — R, then
x’L

0A, A,
oy Oz’

(We assume that second-order partial derivatives of V' exist and are continuous.)

PROOF: ld = ald
" 0xdy  Oyox
0A, 0A, . N
CONVERSE THEOREM. Suppose 5~ or everywhere in R“. Then 3V such that
Y x
A; = 2—‘/ (for short, A = VV or A-dZ = dV ). Namely,
:L-’L

—

V(:f:’):/ A.d# +C.

Zo

Here ¥y is an arbitrary point and C' is an arbitrary constant, equal to V(Zy). The line
integral is
T (z,y)
/ A-d:i"’z/ (A (2, y') da’ + Ay (2, y') dy'],
Zo (z0,Y0)

where one variable in each term is implicitly a function of the other.



ST

C

PrROOF: The main point is that the line integral is independent of path. Green’s theorem

says
/ /T-da?—/ ff-df:% A dz
Cl 02 Clucgeversed

dA, 0OA
=+ —Y 2 ) dxdy=0.
/5(833 ay)my 0

(The sign is + for the situation drawn here. If the curves intersect, we have to add surface
integrals over several regions, with appropriate signs.)

It’s then easy to calculate the gradient of the line integral V (i), obtaining A(Z) and
completing the proof.

Condition Math terminology Physics terminology
0A, O0A
= Y closed irrotational
dy ox
A=VV exact conservative

So our theorems say:
(A) exact = closed (trivial)

(B) closed everywhere in R? = exact
Question. To what extent can we eliminate the condition “everywhere in R?”?

To see why some condition is necessary, consider

_Y v
x2_|_y2’ Y x2_|_y2'

r =

0A 2 g2 0A, . .
Then 22¥ = ¥ =% _ — except at 0, where A and its derivatives are undefined.
or  (22+9y?)? Oy

Nevertheless, A is not exact (on its natural domain, R2 — {0}): Let’s evaluate ffi A-dz

with ZI_,"O =1= (1,0)
- —yd. d
$2+y2 :132—|—y2
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So we see that |, Co A-dE = 0, since y =0 and dy = 0 on Cy. Along the curves of constant
r = \/x2 + y?, we parametrize by x = rcos#, y = rsinf. Thus

VI(Z) = /Z-df’
/Q(x,y) [—r sin 0/ rcos @’
0

— d(rcosf') + —

d(r sin 9')}

r r

=0
0 0

= / (sin? @' df’ + cos® 0" df') = / do’ = 0(z,y)
0 0

[:tan_1 y+N7‘(‘].
T

Path C7 = 0<0<2nr. Path(Cy = 27 <0 <0.
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Path dependence! V cannot be consistently defined. Along some curve from 0 to oo it
must have a jump of 27, and VV = A must be violated there.

When such a situation develops, the proper response to get a good theorem (both
correct and strong) is to go back to the proof that worked for dom A = R? and see what
property of that domain was used which is lacking for dom A=R2- {6} It’s easy to see
that the condition is:

Let © be the domain in which A is exact. (In the complement of €2, A may be
undefined, or defined and not exact.) Every closed curve, C, in 2 is the boundary
of a surface (region), S, contained in .

When Q = R? — {6}, this condition is violated by closed curves encircling the origin.
Similarly for any domain €2 in R? with “holes”. For such a domain, the exact (conservative)
vector fields are a proper subspace of the closed (irrotational) fields. The factor space

H'(Q) = (closed fields)/(exact fields)

will be nontrivial, and its properties (in particular, its dimension) will have something to
do with how many and what kind of holes €2 has.
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To see what these cosets might be good for, consider an arbitrary closed field A and
an arbitrary closed curve C. Note first that the integral fc A - d¥ depends only on the

coset, A, of A: If A’ € A, then A’ = A+ VV for some V and so

%E’-df:fﬁ.df+fvv.df
C C C
:fﬁ-d;ﬁ
C

(since ¢ V -dZ =V (Z1) — V(#1) = 0). For a fixed C, the integral lifts to a linear function
on HY(Q).

Conversely, if ¢, A di = $c A - dZ for all closed C, then A’ and A belong to the
same coset:

f(l’-@)-df:o VO =
C

-,

V(Z) = / (A" — A) - di is well-defined,

so A — A = VV is exact.

Thus, elements A of H'(2) are characterized, or labelled, by the values of the integrals
fo A-dz. Moreover, we don’t need to look at all curves C. Consider the case of an ) with
finitely many holes, each consisting of one point, &;. (These points could be replaced by
regions of finite size, as in “exterior” problems in electrostatics. The important thing is
that curves can’t go “through” the holes and still be in 2; any simple closed curve has the
jth hole either inside or outside.)

G,

Note first that fc A-dZ is the same for any C encircling 71 once counterclockwise and
encircling no other Z;. (Apply Green’s theorem to the annulus between the curves, which
lies in 2. If the curves touch or cross, introduce a third curve to resolve the confusion, and
apply the argument in two steps.)

C/ reversed
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Next, note that the integral over any closed curve is a linear combination, with integer
coefficients, of the integrals over curves of the sort just described. Example:
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Therefore, to label the coset A we need only to look at j basic curves, C;. The j numbers
[ A - dZ are called the periods of A (or of A).
J

What’s still missing is an existence theorem: For every choice of periods, 3A € H(Q)
possessing those periods. This goes together with our previous observations to make up a
special case of DeRham’s theorem (see H. Flanders, Differential Forms, p. 68).

Let’s finish off this topic by asking what is the analogue of the foregoing considerations
for a vector field in three dimensions, A:Q C R® — R3. It turns out that there are two
analogues, which I shall discuss in parallel columns to point out their analogy with each

other.

THE EASY, STARTING THEOREM:
A = VV (conservative) = V x A =

0 (irrotational)

PHYSICAL EXAMPLES:
Electric field; velocity field of fluid in irro-
tational flow.

THE NONTRIVIAL CONVERSE THEOREM:

VxA=0inQ = 3IVv:A4=vVV,
provided that every closed curve in € is
the boundary of a surface contained in 2.

(Proof as before.)

DEFINITION OF THE FACTOR SPACE:
H'(Q2) = (irrotational) /(gradients)

A =V x W (no standard name) = V -
A =0 (solenoidal)

Magnetic field; velocity field of incompress-
ible fluid.

V- A=0inQ = IW:4=VxW,
provided that every closed surface in €2 is
the boundary of a solid region contained in

Q. (Proof harder.)

H?(Q) = (solenoidal)/(curls)



“DANGEROUS” HOLES:

are those that can be lassoed (e.g., in-
finitely extended line singularities). (Con-
sider the magnetic field due to an electrical
current in a wire. It is not possible to de-
fine a “magnetostatic scalar potential” all
around the wire.)

Note that point singularities are now no ob-
stacle to showing ¢ A - dZ = 0:

PERIODS:
are line integrals around elementary singu-
larities. Irrotational A = period is in-
dependent of details of curve by Stokes’s
theorem:

are those that can be caught in sacks (pos-
sibly nonspherical). Examples:

A) point singularity. (If a magnetic
monopole exists, its magnetic field
can’t be derived from a vector po-
tential (W) defined everywhere in
R3? — {0}; somewhere there must
be a “Dirac string” connecting the
monopole to infinity.)

B) ring singularity surrounding line sin-
gularity (can be put into a toroidal
sack). (A ring of magnetic monopoles
has a magnetic field not derivable from
a vector potential.)

are surface integrals around elementary
singularities. Solenoidal A = period is in-
dependent of details of surface by Gauss’s
theorem:



