
General tensors

Three definitions of the term

Definition 1: A tensor of order (p, q) [hence of rank p+ q] is a multilinear function

A:V∗ × · · · × V∗

︸ ︷︷ ︸

p times

×V × · · · × V
︸ ︷︷ ︸

q times

→ R.

(Multilinear means linear in each variable when the other p + q − 1 variables are fixed.)
One calls p the contravariant rank of A and q the covariant rank. The space of tensors of
order (p, q) is

T p
q (V) ≡ V ⊗ · · · ⊗ V

︸ ︷︷ ︸

p times

⊗V∗ ⊗ · · · ⊗ V∗

︸ ︷︷ ︸

q times

.

(The migration of the asterisk is deliberate!)

Definition 2: [The matrix of] a tensor of order (p, q) is a table of (dim V)p+q numbers,

{A
j1...jp
k1...kq

},

such that, under a change of basis which causes the coordinates of a (“contravariant”)
vector in V to transform as

vj 7→ Sj
l v

l ≡ newvj

[hence the coordinates of a covector in V∗ to transform as Uk 7→ (S−1)mk Um], the compo-
nents of the tensor transform according to the law

A
j1...jp
k1...kq

7→ Sj1
l1 S

j2
l2 · · ·S

jp
lp (S

−1)m1
k1

· · · (S−1)mq
kq

Al1...lp
m1...mq

.

The indices {j1, . . . , jp} are called contravariant indices, and {k1, . . . , kq} are called covari-

ant indices. [The mnemonic “Co—Low” can be used to remember which is which.]

Leibnitz would write

newA
j1...jp
k1...kq

=
∂ξj1

∂xl1
· · ·

∂ξjp

∂xlp

∂xm1

∂ξk1
· · ·

∂xmq

∂ξkq
Al1...lp

m1...mq
,

which is easier to remember. Here A···

···
are the components in the x coordinate system,

and newA···

···
are the components in the ξ coordinate system.

Definition 3: Start with the Cartesian product

V × V × · · · × V
︸ ︷︷ ︸

p

×V∗ × · · · × V∗

︸ ︷︷ ︸

q

;
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form the (huge, infinite-dimensional) vector space W of all formal linear combinations of
elements of this set; consider the subspace X ⊂ W spanned by elements of the form

(α~v1 + ~u1, . . .)− α(~v1, . . .)− (~u1, . . .) (α ∈ R)

and similar elements associated with the other p+ q − 1 “slots”; then

T p
q (V) ≡ W/X ,

and the equivalence class containing (~v1, ~v2, . . . , ~vp, Ṽ
1, . . . , Ṽ q) is called ~v1⊗~v2⊗· · ·⊗ Ṽ q.

Familiar examples of tensor spaces

T 0
0 = R

T 0
1 = V∗

T 1
0 = V∗∗ = V

T 1
1 = V ⊗ V∗ = L(V;V)

T 0
2 = V∗ ⊗ V∗ = space of bilinear forms on V (V × V → R)

T 2
0 = V ⊗ V = space of bilinear forms on V∗

Relations among the definitions (indicated briefly)

(3) → (1): ~v1 ⊗ · · · ⊗ Ṽ q defines a multilinear functional on V∗ × · · · × V by

(~v1 ⊗ · · · ⊗ Ṽ q)(Ũ1, . . . , Ũp, ~u1, . . . , ~uq)

≡ Ũ1(~v1) · · · Ũ
p(~vp) Ṽ

1(~u1) · · · Ṽ
q(~uq).

(1) → (2): The matrix of a multilinear functional A with respect to a basis {~dj} for

V and the dual basis {D̃j} for V∗ is

{

A
(

D̃j1 , . . . , D̃jp , ~dk1
, . . . , ~dkq

)}

(Each index jα or kα ranges from 1 to dim V.)

(3) → (2): The matrix of an element ~v1 ⊗ · · · ⊗ Ṽ q ∈ T p
q is

{

vj11 vj22 · · · vjpp V 1
k1

· · ·V q
kq

}

.
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Warning: Elements of the form ~v1 ⊗ · · · ⊗ Ṽ q span T p
q , but they do not constitute all of

it. The most general element is a linear combination of such products; it can’t be factored
as a single product. Example: We’ve noted that T 1

1 is isomorphic to L(V;V), but the
elements of T 1

1 of the form ~v⊗ Ṽ are operators of rank 1 (or 0), in the old sense of “rank”.
(The range of such an operator is {α~v}.) Further example: An example of a nonfactorable
element of V ⊗ V (provided that dim V ≥ 4) is

~d1 ⊗ ~d2 + ~d3 ⊗ ~d4

when the four vectors are linearly independent. There is no way to write this as ~v1 ⊗ ~v2 .

Even when a tensor factors (is simple), that representation is not unique; for example,

~v1 ⊗ (α~v2) = (α~v1)⊗ ~v2 ∀α ∈ R.

A basis for T p
q

is
{

~dj1 ⊗ · · · ⊗ ~djp ⊗ D̃k1 ⊗ · · · ⊗ D̃kq

}

. (Note that “co” indices are now up and “contra”

indices down. This makes the summation convention work out right when an element of
the space is expanded as the sum of its matrix elements times the corresponding basis
elements.)

Since each index independently ranges up to dim V, it follows that

dim
(
T p
q

)
= (dim V)p+q.

For contrast, note that

dim [V ⊕ · · · ⊕ V
︸ ︷︷ ︸

p

⊕V∗ ⊕ · · · ⊕ V∗

︸ ︷︷ ︸

q

] = (p+ q) dim V.

Recall that “⊕” is effectively the same thing as “×” (the Cartesian product) with addition
and scalar multiplication defined.

(1, 2, 3)⊕ (0, 4) ≃ (1, 2, 3, 0, 4); (1, 2, 3)⊗ (0, 4) ≃

(
0 0 0
4 8 12

)

Remarks

(A) All this can be generalized to tensor products of arbitrary vector spaces:

V1 ⊗ V2 ⊗ · · · ⊗ Vr consists of multilinear functions on V∗

1 × V∗

2 × · · · × V∗

r .
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(The analogues of definitions 2 and 3 are left to the reader.)

As an application of such a construction, consider a system of partial differential
equations (≡ a PDE for a vector-valued unknown) with independent variable ~x ≡ {xµ} ∈

R3 and dependent variable ~φ ≡ {φj} ∈ V, where V might be Cq, say. [An example of the
application is the spinor-valued wave functions of particles in quantum physics. In general,
we have this situation whenever the value of the unknown function at a point is neither
a scalar, nor a vector whose possible directions can be identified with the directions of
physical space R3 (or whatever the domain space is).] The PDE could be of the form

3∑

µ=1

∂2~φ

∂xµ2
+

3∑

µ=1

Mµ ∂~φ

∂xµ
= ~0.

Here {

∂~φ

∂xµ

}

≡ {∇φj} ∈ V ⊗ (R3)∗,

{Mµ} ≡
{
Mµj

k

}
∈ V ⊗ V∗ ⊗R3,

etc.

(B) Generalization of the isomorphism

(operators) ↔ (bilinear functions) :

Any element of V1 ⊗ · · · ⊗ Vr can be thought of as a multilinear operator on V∗

j × V∗

j+1 ×
· · · × V∗

r into V1 ⊗ · · · ⊗ Vj−1 , for any j between 2 and r − 1. (In fact, since V ⊗ U is
isomorphic to U ⊗ V, the same remark applies to any breakup of the list of factors into
two parts.)

(C) A multilinear function on V1 × · · · × Vr is equivalent to a linear functional on
V1⊗· · ·⊗Vr (and totally different from a linear functional on V1⊕· · ·⊕Vr). (See homework.)

(D) For A ∈ T p
q and B ∈ T r

s , we can define A⊗B ∈ T p+q
q+s by

(A⊗B)(~v1, . . . , Ṽ
s) ≡ A(~v1, . . . )B(~vp+1, . . . )

(cf. Definition 1 of tensors); or by multiplying coefficients:

(A⊗B)
j1...jp+r

k1...kq+s
≡ A

j1...jp
k1...kq

B
jp+1...jr
kq+1...ks

(cf. Definition 2 of tensors).

(E) If V is an inner-product space, we can “raise and lower indices” by G :

Ak
j = gklAlj , Alj = glk A

k
j .

If we stick to ON bases, there is no need to distinguish contravariant from covariant indices.
(See Sec. 35 and Simmonds). Note that

gk
m ≡ gkl g

lm = δk
m,

and attaching a second g·· raises the other index, completing the conversion of g·· into g··.
This vindicates the notational convention G−1 ↔ {g··}.
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Contractions (Sec. 34)

Given the matrix representation of a (p, q)-tensor, we can obtain a (p−1, q−1)-tensor
by setting any “up–down” pair of indices equal and summing: for example,

Bjk ≡ Aj
l
kl

(
N∑

l=1

understood

)

.

This operation is called contracting indices. Bjk has the right transformation property
because

Sl
i(S

−1)ml = δmi .

In other words, the contracted index pair is invariant under basis change for the same
reason that the scalar quantity Ũ(~v) = Ujv

j is invariant.

Alternatively, consider a basis element

Ṽ 1 ⊗ ~v2 ⊗ Ṽ 3 ⊗ Ṽ 4.

The corresponding contracted (“B”) tensor is

Ṽ 4(~v2) Ṽ
1 ⊗ Ṽ 3,

which is obviously intrinsically defined. Since each of the basis elements is arbitrary, this
defines the contraction operation on all tensors in T 1

3 .

Special case: A ∈ T 1
1 ⇒ B = Aj

j = trA ∈ R.

Note in contrast that
∑

Ajj is not invariant under (nonorthogonal) basis changes;
thus it has no intrinsic meaning. The same is true for any sum over indices which are both
covariant or both contravariant.

Another example: In Riemannian geometry and general relativity one studies some-
thing called the Riemann curvature tensor, Rj

klm. From this are defined the Ricci tensor,
Rkm ≡ Rj

kjm , and the curvature scalar, R ≡ Rk
k ≡ gklRlk . One can also construct

higher-order scalar objects such as

Rjk
lm Rlm

pq R
pq
jk .
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Totally antisymmetric tensors (Chap. 8)

We have run out of time, but I want to indicate briefly the relationships among
antisymmetric tensors, determinants, volume, and integration. (“Totally antisymmetric”
means antisymmetric under interchange of any pair of indices (or argument vectors). The
indices or arguments must therefore be either all covariant or all contravariant.)

Certain integrals over hypersurfaces of dimension p are naturally described in terms of
rank-p antisymmetric tensors, without reference to a metric (inner product). Such integrals
generalize the notion of “flux through a surface” in classical vector analysis.

The classical formulation of the magnetic flux through a surface is

ΦS =

∫∫

S

( ~B · n̂) dS,

where dS is the element of surface area. In terms of two coordinates, u and v, parametrizing
S, the unit normal vector is

n̂ =
∂~x
∂u

× ∂~x
∂v∥

∥∂~x
∂u

× ∂~x
∂v

∥
∥
;

but the denominator just cancels a factor in the definition of dS, so that the integral in
fact doesn’t depend on the inner product used to define length and orthogonality. The
upshot is that

ΦS =

∫∫

S

[Bx dy dz +By dz dx+Bz dx dy] ,

which can be written as ∫∫

S

1

2

∑

j,k

Ωjk dx
j dxk

whre Ω is the antisymmetric tensor associated to ~B via the cross product.

To see how antisymmetric tensors relate to determinants, consider the elementary
antisymmetrized monomial ({Êj} ≡ dual basis to the natural basis of RN )

Ê1 ∧ Ê2 ≡ Ê1 ⊗ Ê2 − Ê2 ⊗ Ê1,

[Ê1 ∧ Ê2](~v, ~u) ≡ v1u2 − v2u1.
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If dimV = 2, this is the determinant of the matrix whose columns are ~v and ~u; furthermore,
this number is, up to sign, the area of the parallelogram spanned by those two vectors. In
R3, the area of the parallelogram determined by two vectors is ‖~v × ~u‖, which is still the
norm of an antisymmetric combination of the vectors. For three vectors in R3, the volume
of the parallelepiped they span is

|~v · (~u× ~w)| = ±

∣
∣
∣
∣
∣
∣

v1 v2 v3

u1 u2 u3

w1 w2 w3

∣
∣
∣
∣
∣
∣

≡ [Ê1 ∧ Ê2 ∧ Ê3](~v, ~u, ~w).

This pattern continues to higher dimensions and provides the key to defining integration on
hypersurfaces (p-dimensional curved sets in N -dimensional space) or manifolds (abstract
p-dimensional spaces). The “wedge” operation, ∧, incidentally, is defined for any list of
covectors as arguments (and also for any list of vectors), although here we’ve used it only
on the elements of an ON basis for V∗. The definition of the wedge often differs by a factor
of p! from the one I’ve given here.

Remark: A general tensor of rank greater than 2 is not a sum of a
totally symmetric and a totally antisymmetric part. More complicated
intermediate symmetry types exist, symbolized by Young diagrams.

Duality

The connection between vectors and antisymmetric 2-tensors in R3 extends in RN to
an isomorphism

(antisymmetric p-tensors) ↔ (antisymmetric (N − p)-tensors).

The cross product corresponds to the case N = 3, p = 2, N − p = 1. (An object with
only one index counts as antisymmetric by default.) The classical notation for this duality
isomorphism is

Bj1...jN−p = ǫj1...jN−pk1...kp Ak1...kp
,

where the tensor components are those with respect to an ON basis, and the object ǫ is
defined by

ǫ12...N ≡ 1,

ǫj1...jN ≡ 0 if any two indices are equal,

ǫ is antisymmetric under permutations.

Nowadays it is more fashionable to give the definition by describing the action of the
isomorphism on the ON basis elements rather than on the components of an arbitrary
tensor:

∗
(
êk1

∧ · · · ∧ êkp

)
= ±êj1 ∧ · · · ∧ êjN−p

.
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This mapping, called the dual or the Hodge star, requires

1) an inner product (metric), to define “ON basis”;

2) an orientation, to fix the signs.

References on tensors, exterior algebra,
and applications to differential geometry

B. Schutz, Geometrical Methods of Mathematical Physics, Cambridge U. P., 1980, Chaps.
2 and 4.

R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Dover, 1980, Chaps. 2
and 4.

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1978, Chap. 7.

W. L. Burke, Applied Differential Geometry, Cambridge U. P., 1985, relevant chapters.

C. T. J. Dodson and T. Poston, Tensor Geometry, Pitman, 1977, relevant chapters.

I especially recommend the first half of Chapter 4 of Schutz.
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