Another proof of the spectral theorem

Reference: H. S. Wilf, “An algorithm-inspired proof of the spectral theorem in E™”,
Amer. Math. Monthly 88, 49-50 (1981).

This proof replaces some algebra by some topology (which may have been encountered
in Math. 409, 436, etc.) I have filled in a few details; Wilf’s article is very brief.

Wilf considers the real, symmetric case; he states, “The proof readily generalizes to
the complex Hermitian case.”

STEP 1: Prove the theorem in the 2 x 2 case:
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We take this to be known, since it is taught in [pre-|calculus courses as “rotation of
axes for conic sections”:

ax? + 2bxy + dy* — o/ (2")* +d'(v)>.
The formula for 6 in terms of a, b, d will not concern us.

This is the step of the proof which requires a major change in the complex Hermitian
case. The most general 2 x 2 Hermitian matrix involves 4 real parameters, not 3, and the
most general 2 X 2 unitary matrix is described by 4 angles, not 1. One of these angles
corresponds to an overall phase and can be ignored, leaving the 3 angular parameters of
the group SU(2) of unitary matrices of determinant 1. We shall have to leave out the
details, for lack of time.

STEP 2: Extrapolate this to the n x n case:

Given A = {A}}, Al = Akj real, and given a particular off-diagonal index pair
(jo, ko), jo # ko, there is an orthogonal R such that, if B = R™'AR, then B/, =0 =
Bho, .
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Example: If jo = 1, kg = 2, take R = —sinf cosd __ |, where the 6 is that
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appropriate to the upper-left-hand 2 x 2 block of A. In general, take R/, = cos#,
RIo,, = sind, etc., for a suitable 6.

Observe that multiplying A on the right by R rotates the jo, ko columns of A (within
the subspace they span in R™) and leaves the other columns alone. The two numbers in
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the [th row of those two columns experience a rotation within R2. Similarly, multiplying
on the left by R=!(= R*) rotates the jo, ko rows.

Remark: Iteration messes things up. Making A% = 0 makes A'; # 0 once again. Conse-
quently, more steps are necessary to complete the proof:

STEP 3: Let us define Od(A) to be the sum of the squares of the off-diagonal elements of
A:
N2
Od(A) = (4%)".
i#k
Note that Od(A) = 0 iff A is diagonal; otherwise it is positive. Then note that in the
situation of Step 2,
1 ; 2
Od(R™"AR) = Od(A) — 2 (47%,)
<Od(4)  (if Al #0).

Proof: There are 3 kinds of off-diagonal elements:

1. {4, k} = {jo, ko}: These matrix elements were annihilated by

the rotation; hence we subtract 2 (Ajoko)z.

2. {j,k} contains exactly one of {jo,ko} (i.e., the row index
or the column index, but not both, is one of the distin-

guished pair): These matrix elements were rotated among

themselves, so the sum of their squares is unchanged.

3. {J, k} does not involve {jo, ko}: These matrix elements were

unchanged.

STEP 4: Consider Od(R™'AR) = f(R) as a function of R. Note:
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1) f is continuous (in the matrix elements of R).

2) The set of all orthogonal matrices R is a compact ( <= closed and bounded, in this
context) subset of R”Z, since it is defined by the equations

S (R =1 Y RiRy =0
J

J

Therefore, f has a minimum value, which is f(Ry) for some Ry. This value must be
zero (i.e., Ry ARy is diagonal), since otherwise we could find a smaller value of f(R) by
Step 3. This proves the theorem.



