Another proof of the spectral theorem

Reference: H. S. Wilf, "An algorithm-inspired proof of the spectral theorem in E^n ", Amer. Math. Monthly 88, 49–50 (1981).

This proof replaces some algebra by some topology (which may have been encountered in Math. 409, 436, etc.) I have filled in a few details; Wilf's article is very brief.

Wilf considers the real, symmetric case; he states, "The proof readily generalizes to the complex Hermitian case."

Step 1: Prove the theorem in the 2×2 case:

Given $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, there is an orthogonal matrix $R = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ such that $R^{-1}AR$ is diagonal.

We take this to be known, since it is taught in [pre-]calculus courses as "rotation of axes for conic sections":

$$ax^{2} + 2bxy + dy^{2} \longrightarrow a'(x')^{2} + d'(y')^{2}$$
.

The formula for θ in terms of a, b, d will not concern us.

This is the step of the proof which requires a major change in the complex Hermitian case. The most general 2×2 Hermitian matrix involves 4 real parameters, not 3, and the most general 2×2 unitary matrix is described by 4 angles, not 1. One of these angles corresponds to an overall phase and can be ignored, leaving the 3 angular parameters of the group SU(2) of unitary matrices of determinant 1. We shall have to leave out the details, for lack of time.

Step 2: Extrapolate this to the $n \times n$ case:

Given $A=\{A^j_k\}$, $A^j_k=A^k_j$ real, and given a particular off-diagonal index pair $(j_0,k_0),\ j_0\neq k_0$, there is an orthogonal R such that, if $B\equiv R^{-1}AR$, then $B^{j_0}{}_{k_0}=0=B^{k_0}{}_{j_0}$.

Example: If
$$j_0 = 1$$
, $k_0 = 2$, take $R = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, where the θ is that

appropriate to the upper-left-hand 2×2 block of A. In general, take $R^{j_0}{}_{j_0} = \cos \theta$, $R^{j_0}{}_{k_0} = \sin \theta$, etc., for a suitable θ .

Observe that multiplying A on the right by R rotates the j_0, k_0 columns of A (within the subspace they span in \mathbb{R}^n) and leaves the other columns alone. The two numbers in

the *l*th row of those two columns experience a rotation within \mathbb{R}^2 . Similarly, multiplying on the left by $R^{-1}(=R^*)$ rotates the j_0, k_0 rows.

Remark: Iteration messes things up. Making $A_3^2 = 0$ makes $A_2^1 \neq 0$ once again. Consequently, more steps are necessary to complete the proof:

STEP 3: Let us define Od(A) to be the sum of the squares of the off-diagonal elements of A:

$$\operatorname{Od}(A) \equiv \sum_{j \neq k} (A^{j}_{k})^{2}.$$

Note that Od(A) = 0 iff A is diagonal; otherwise it is positive. Then note that in the situation of Step 2,

$$Od(R^{-1}AR) = Od(A) - 2(A^{j_0}_{k_0})^2$$

< $Od(A)$ (if $A^{j_0}_{k_0} \neq 0$).

Proof: There are 3 kinds of off-diagonal elements:

1. $\{j, k\} = \{j_0, k_0\}$: These matrix elements were annihilated by the rotation; hence we subtract $2(A^{j_0}k_0)^2$.

2. $\{j,k\}$ contains exactly one of $\{j_0,k_0\}$ (i.e., the row index or the column index, but not both, is one of the distinguished pair): These matrix elements were rotated among themselves, so the sum of their squares is unchanged.

3. $\{j, k\}$ does not involve $\{j_0, k_0\}$: These matrix elements were unchanged.

STEP 4: Consider $Od(R^{-1}AR) \equiv f(R)$ as a function of R. Note:

- 1) f is continuous (in the matrix elements of R).
- 2) The set of all orthogonal matrices R is a compact (\iff closed and bounded, in this context) subset of \mathbb{R}^{n^2} , since it is defined by the equations

$$\sum_{j} (R^{j}_{k})^{2} = 1, \qquad \sum_{j} R^{j}_{k} R^{j}_{l} = 0.$$

Therefore, f has a *minimum value*, which is $f(R_0)$ for some R_0 . This value must be zero (i.e., $R_0^{-1}AR_0$ is diagonal), since otherwise we could find a smaller value of f(R) by Step 3. This proves the theorem.