
Lecture for Week 5 (Secs. 3.4–5)

Trig Functions and the Chain Rule
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The important differentiation formulas for
trigonometric functions are

d

dx
sinx = cosx,

d

dx
cosx = − sinx.

Memorize them! To evaluate any other trig deriva-
tive, you just combine these with the product (and
quotient) rule and chain rule and the definitions of
the other trig functions, of which the most impor-
tant is

tan x =
sin x

cos x
.
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Exercise 3.4.19

Prove that

d

dx
cotx = − csc2 x.

Exercise 3.4.23

Find the derivative of y = cscx cotx.
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What is d
dx cot x ? Well, the definition of the

cotangent is

cotx =
cosx

sinx
.

So, by the quotient rule, its derivative is

sinx(− sin x) − cos x(cosx)

sin2 x

= −
1

sin2 x
≡ − csc2 x

(since sin2 x + cos2 x = 1).
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To differentiate cscx cot x use the product
rule:

dy

dx
=

d cscx

dx
cotx + cscx

d cotx

dx
.

The second derivative is the one we just cal-
culated, and the other one is found similarly
(Ex. 3.4.17):

d

dx
csc x = − cscx cot x.
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So
dy

dx
= − cscx cot2 x − csc3 x.

This could be rewritten using trig identities, but
the other versions are no simpler.

Another method:

y = csc x cot x =
cos x

sin2 x
.

Now use the quotient rule (and cancel some extra
factors of sin x as the last step).
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Exercise 5.7.11 (p. 353)

Find the antiderivatives of

h(x) = sinx − 2 cosx.
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We want to find the functions whose deriva-
tive is h(x) = sinx − 2 cosx. If we know two
functions whose derivatives are (respectively)
sinx and cos x, we’re home free. But we do!

d(− cosx)

dx
= sinx,

d sinx

dx
= cosx.

So we let H(x) = − cosx − 2 sinx and check that
H ′(x) = h(x). The most general antiderivative of
h is H(x) + C where C is an arbitrary constant.
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Now let’s drop back to see where the trig
derivatives came from. On pp. 180–181 we’re
offered 4 trigonometric limits, but they are not of
equal profundity.

The first two just say that the sine and co-
sine functions are continuous at θ = 0. (But you
already knew that, didn’t you?)
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The third limit is the important one:

lim
θ→0

sin θ

θ
= 1.

It can be proved from the inequalities

sin θ < θ < tan θ (for 0 < θ < π/2),

which are made obvious by drawing some pic-
tures.

It says that sin θ “behaves like” θ when θ is
small.
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In contrast, the fourth limit formula,

lim
θ→0

cos θ − 1

θ
= 0,

says that cos θ “behaves like” 1 and that the dif-
ference from 1 vanishes faster than θ as θ goes
to 0.

In fact, later we will see that

cos θ ≈ 1 −
θ2

2
.
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Exercise 3.4.15

lim
x→0

tan 3x

3 tan 2x
.
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Split the function into a product of functions
whose limits we know:

tan 3x

3 tan 2x
=

1

3

sin 3x

cos 3x

cos 2x

sin 2x

=
sin 3x

3x

2x

sin 2x

cos 2x

2 cos 3x
.

As x → 0, 2x and 3x approach 0 as well. There-
fore, the two sine quotients approach 1. Each
cosine also goes to 1. So the limit is 1

2 .
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The chain rule is the most important and
powerful theorem about derivatives. For a first
look at it, let’s approach the last example of last
week’s lecture in a different way:

Exercise 3.3.11 (revisited and shortened)

A stone is dropped into a lake, creating a cir-
cular ripple that travels outward at a speed of
60 cm/s. Find the rate at which the circle is in-
creasing after 3 s .
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In applied problems it’s usually easier to use
the “Leibniz notation”, such as df/dx, instead of
the “prime” notation for derivatives (which is es-
sentially Newton’s notation).

The area of a circle of radius r is

A = πr2.

So
dA

dr
= 2πr.
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(Notice that dA/dr = 2πr is the circumference.
That makes sense, since when the radius changes
by ∆r, the region enclosed changes by a thin cir-
cular strip of length 2πr and width ∆r, hence area
∆A = 2πr ∆r.)

From A′(r) = 2πr we could compute the
rate of change of area with respect to radius

by plugging in the appropriate value of r
(namely, 60× 3 = 180). But the question asks for
the rate with respect to time and tells us that
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dr

dt
= 60 cm/s .

Common sense says that we should just multiply
A′(r) by 60, getting

dA

dt
=

dA

dr

dr

dt
= 2π(60)2t, t = 3.

Of course, this is the same result we got last
week.
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Now consider a slight variation on the prob-
lem:

Exercise 3.3.11 (modified)

A stone is dropped into a lake, creating a cir-
cular ripple that travels outward at a speed of
60 cm/s. Find the rate at which the circle is in-
creasing when the radius is 180 cm .

18



To answer this question by the method of
last week, using A(t) = 3600πt2, we would need
to calculate the time when r = 180. That’s easy
enough in this case (t = 3), but it carries the ar-
gument through an unnecessary loop through an
inverse function. It is more natural and simpler
to use this week’s formula,

dA

dt
=

dA

dr

dr

dt
.

It gives
dA

dt
= (2πr)60 = 21600π.
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In both versions of the exercise we dealt
with a function of the type A(r(t)), where the
output of one function is plugged in as the in-
put to a different one. The composite function

is sometimes denoted A ◦ r (or (A ◦ r)(t)). The
chain rule says that

(A ◦ r)′(t) = A′(r(t))r′(t),

or
dA

dt
=

dA

dr

dr

dt
.
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Now we can use the chain rule to differenti-
ate particular functions.

Exercise 3.5.7

Differentiate

G(x) = (3x − 2)10(5x2 − x + 1)12.
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G(x) = (3x − 2)10(5x2 − x + 1)12.

It would be foolish to multiply out the pow-
ers when we can use the chain rule instead. Of
course, the first step is a product rule.

G
′
(x) = 10(3x − 2)

9 d

dx
(3x − 2) (5x

2
− x + 1)

12

+12(3x − 2)
10

(5x
2
− x + 1)

11 d

dx
(5x

2
− x + 1)
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= 30(3x − 2)9(5x2
− x + 1)12

+ 12(10x − 1)(3x − 2)
10

(5x
2
− x + 1)

11
.

(The book’s answer combines some terms at the
expense of factoring out a messy polynomial.)
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Note that it is not smart to use the quotient
rule on a problem like

d

dx

x + 1

(x2 + 1)3
.

You’ll find yourself cancelling extra factors of
x2 + 1. It’s much better to use the product rule
on

(x + 1)(x2 + 1)−3,

getting only 4 factors of (x2 + 1)−1 instead of 6.
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Exercise 3.5.51

Find the tangent line to the graph of

y =
8

√
4 + 3x

at the point (4, 2).
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y = 8(4 + 3x)−1/2.

dy

dx
= −4(4 + 3x)−3/2(3).

When x = 4, y′ = −12(16)−3/2 = −3/16 (and
y = 8(16)−1/2 = 2 as the problem claims). So the
tangent is

y = 2 −
3

16
(x − 4).
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The book simplifies the equation

y = 2 −

3

16
(x − 4)

to 3x + 16y = 44, but I think it is better to leave
such equations in the form that emphasizes the
dependence on ∆x (= x − 4 in this case). The
point of a tangent line is that is the best linear
approximation to the curve in the region where ∆x
is small.
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Exercise 3.5.59

Suppose F (x) = f(g(x)) and

g(3) = 6, g′(3) = 4, f ′(3) = 2, f ′(6) = 7.

Find F ′(3).
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F ′(x) = f ′(g(x))g′(x)

= f ′(g(3))g′(3) = f ′(6) × 4 = 28.

f ′(3) is irrelevant — a trap. If y = g(x) and
z = f(y) are physical quantities, then z = F (x),
and in Leibniz notation we would write

dz

dx
=

dz

dy

dy

dx
.

Nothing wrong with that, except that it makes it
easy to fall into the trap!
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